Проектировочный расчет сечения крыла. Расчет аэродинамических характеристик крыла с использованием программного комплекса ANSYS CFX Площадь крыла формула

Размах крыла самолета на этапе проектирования определяется через нагрузку на размах крыла. Дело в том, что летно-технические характеристики ЛА далеко не в последней степени зависят от размаха крыла, а при имеющемся взлетном весе - от нагрузки на размах:

где
G - вес;
- размах крыла.

Теорема Н.Е.Жуковского о подъемной силе крыла, выведенная в 1906 г., выглядит в виде формулы следующим образом :

где
Y - подъемная сила крыла;
- плотность воздуха;
V- скорость полета;
Г- циркуляция скорости.

При анализе развития самолетов в используется зависимость:

,(3)

где
N - мощность двигателя;
- к.п.д. винта.

В случае установившегося горизонтального полета подъемная сила крыла уравновешивается весом ЛА:

С учетом (1) и (4) формулы (2) и (3) предстанут в следующем виде:

,(5)
.(6)

Формула (5) показывает существование связи нагрузки на размах с плотностью воздуха и скоростью полета, но из-за сложности определения циркуляции для практических расчетов на этапе проектирования мало пригодна. Формула (6) при своей простоте на практике дает очень большие погрешности, так как исходная зависимость (3) предполагает жесткую связь подъемной силы крыла с индуктивным сопротивлением, а также считается, что полет происходит на уровне земли.

Если исходить, как было сказано выше, из того, что в установившемся горизонтальном полете подъемная сила равна весу (4), а сила сопротивления уравновешена тягой винта:

где
X - сила сопротивления;
P - тяга силовой установки,

то, проведя несложные преобразования (полную выкладку которых опустим ввиду небольшого объема журнальной статьи), получим формулу, позволяющую определить нагрузку на эффективный размах крыла самолета, учитывающую режим полета, степень дросселирования двигателя, к.п.д. винта, скорость и высоту полета в виде следующей зависимости:

,(8)

где
- нагрузка на эффективный размах крыла самолета (кг/м);
- коэффициент режима полета;
- коэффициент дросселирования двигателя;
- расчетная мощность двигателя (л.с.); - плотность воздуха на расчетной высоте полета;
- коэффициент высотности двигателя;
V - скорость полета (км/час).

В свою очередь, коэффициенты выглядят так:

,(9) ,(10)

где
- коэффициент формы крыла в плане;
- коэффициент сопротивления при нулевой подъемной силе;
- коэффициент индуктивного сопротивления;
- действительная мощность двигателя(л.с.);
- номинальная мощность двигателя (л.с.).

При взлетном весе и эффективном размахе крыла нагрузка на эффективный размах:

Потери мощности двигателя при оценке учитываются следующим образом:

,(12)

где
- к.п.д. винта (см.выше);
- к.п.д. редуктора.

На этапе проектирования ЛА коэффициенты Схо и Схi, как правило, неизвестны, но в силу свойств индуктивного сопротивления поляра самолета близка к квадратичной параболе (а расчетная поляра, т.е. полученная не в результате продувок, и является параболой). Для квадратичной параболы верны следующие соотношения (см. рис.1):

Экономический крейсерский режим полета, точка 1;
- режим максимального аэродинамического качества (Кmax), точка 2;
- экономический режим полета, точка 3.

В режиме максимального качества, как известно, обеспечивается наибольшая дальность полета. Экономический режим позволяет достичь максимальной продолжительности полета. Экономический крейсерский режим наиболее приемлем при коммерческих транспортных операциях. Значения коэффициента приведены ниже :

0 - для эллиптического крыла в плане;
= 0,002...0,005 - для крыла с центропланом;
= 0,02...0,08 - для трапециевидного крыла;
= 0,05...0,12 - для прямоугольного крыла.
КПД винта можно принять следующим:
= 0,65...0,75 - для винта фиксированного шага (ВФШ);
= 0,7...0,85 - для винта изменяемого шага (ВИШ).
КПД редуктора лежит в пределах:
= 0,94...,0,96 - для клиноременной передачи;
= 0,97...0,98 - для зубчатой передачи.
При отсутствии редуктора в силовой установке СЛА:
= 1;
= 0,55...0,65.

Мощность двигателя уменьшается с увеличением высоты полета. Коэффициент падения мощности невысотных двигателей , а также значения плотности воздуха в зависимости от высоты полета приведены в таблице 1.

Таблица 1

Коэффициент падения мощности невысотного поршневого двигателя
в зависимости от высоты полета

Коэффициент дросселирования двигателя может изменяться в широком диапазоне и конкретное значение выбирается конструктором.

После того, как по формуле (8), из-за которой, собственно, и пишется эта статья, будет определена нагрузка на эффективный размах, при известном взлетном весе из (11) можно без труда получить величину эффективного размаха:

Нам остается по имеющемуся эффективному размаху определить геометрический размах крыла. Ниже приводятся формулы, позволяющие это сделать для случая классического моноплана. Если у Вас стоит задача проектирования ЛА (или СЛА) другой компоновочной схемы, тогда Вам, уважаемый читатель, следует учесть особенности выбранной Вами схемы. Хотя для первоначальной, грубой прикидки можете воспользоваться данной методикой.

,(14)

где
S - площадь крыла в плане (кв.м);
Si- суммарная в плане площадь, занимаемая подфюзеляжной частью и мотогондолами самолета (кв.м).
В свою очередь:

,(15)

где
- площадь подфюзеляжной части крыла (кв.м);
Si - площадь крыла, занимаемая мотогондолой (кв.м), см. рис.2.

Как показывает статистика слетов СЛА, "конструкторы-самодельщики" в силу технологической простоты чаще применяют прямоугольное в плане крыло.

Для такого крыла формула (14) предстанет в виде:

,(16)

где
- размах крыла, занимаемый подфюзеляжной частью и мотогондолами.
Окончательным решением уравнения (16) будет выражение:

,(17)

которое можно решить с использованием таблиц Брадиса, если у Вас не оказалось под рукой калькулятора. Неплохие результаты дает приближенная зависимость:

,(18)

но необходимо помнить, что эту формулу допустимо использовать только на самом первоначальном этапе, так называемом "этапе нулевого приближения".

В случае, если форма крыла отличается от прямоугольной, решение зависимости (14) представляет определенные трудности, которых на практике можно избежать лишь применением вычислительной техники. При невозможности привлечь к работе компьютер (отсутствие самого компьютера или соответствующего программного обеспечения) можно воспользоваться формулой (17) или (18), а затем методом последовательных приближений определять геометрический размах крыла с использованием формулы (14), на каждом шаге уточняя Si. Касаясь вопроса приближений, по праву самого "маститого" специалиста в области формулы (8), рекомендую использовать ее как проектировочную, с последующим уточнением размаха по результатам продувок или проверочных расчетов для ЛА взлетным весом более 500...600 кг. Для ЛА взлетным весом менее 500 кг эта формула может оказаться единственным способом определения размаха крыла, поскольку методики проектирования крыла, изложенные в книгах "Проектирование самолетов" Н.А.Фомина или С.М.Егера, по своей трудоемкости соизмеримы с трудозатратами по изготовлению СЛА (и, как правило, "не по зубам" самодельщику-одиночке).

На этом, уважаемый читатель, заканчиваем описание самой формулы (8), а также необходимых для ее использования дополнений, и теперь, по уже сложившейся традиции, рассмотрим пример. Данные для расчета см. в табл. 2.

Таблица 2

Параметр

Размерность

Самолет №1

Самолет №2

Сам расчет с пояснениями приведен в табл. 3.

Таблица 3

Параметр

Размерность

Самолет№1

Самолет №2

Примечание

Крейсерский режим

по формуле (9)

по формуле (12)

по формуле (8)

по формуле (13)

по формуле (14)

Полученные результаты расчета сравним с реально существовавшими машинами в табл. 4.

Таблица 4

Исходные данные для расчета (табл. 2) взяты из и для АНТ-37 и ЦКБ-26 соответственно. Следует сообщить, что эти самолеты участвовали в конкурсе ВВС РККА 1936 г. на дальний бомбардировщик, оба были оборудованы ВФШ и имели по два невысотных двигателя М-85, и для своего времени являлись довольно передовой техникой.

Из личного опыта общения с "самодельщиками" знаю, что многие из них любят читать журналы и другие публикации, зачастую с целью обнаружить какое-либо уже готовое к применению техническое решение, поэтому следует привести в табл. 5 заключительный пример, к тому же учитывающий специфику журнала "АОН".

Прежде чем рассматривать, что же такое подъемная сила крыла самолета и как ее рассчитать, мы представим, что авиалайнер – это материальная точка, которая осуществляет движение по определенной траектории. Для смены этого направления либо силы движения необходимо ускорение. Оно бывает двух видов: нормальное и тангенциальное. Первое стремится поменять направление движения, а второе оказывает влияние на скорость движения точки. Если говорить о самолете, то его ускорение создается за счет подъемной силы крана. Рассмотрим конкретнее это понятие.

Подъемная сила входит в состав аэродинамической силы. Она резко возрастает, когда меняется угол атаки. Таким образом, маневренность воздушного судна заложена непосредственно в подъемной силе.

Расчет подъемной силы крыла самолета выполняется при помощи специальной формулы: Y= 0.5 ∙ Cy ∙ p ∙ V ∙ 2∙ S.

  1. Cy – это коэффициент подъемной силы крыла самолета.
  2. S – площадь крыла.
  3. Р – плотность воздуха.
  4. V – скорость потока.

Аэродинамика крыла самолета, которая оказывает влияние на него при полете, вычисляется таким выражением:

F= c ∙ q ∙ S, где:

  • C – это коэффициент формы;
  • S – площадь;
  • q – скоростной напор.

Следует отметить, что кроме крыла, подъемная сила создается при помощи других составляющих, а именно хвостового горизонтального оперения.

Те, кто интересуются авиацией, в частности ее историей, знают, что впервые самолет взлетел в 1903 году. Многих интересует вопрос: почему это случилось так поздно? По каким причинам это не случилось раньше? Все дело в том, что ученые на протяжении долгого времени недоумевали, каким образом высчитать подъемную силу и определить размер и форму крыла воздушного судна.

Если брать закон Ньютона, то подъемная сила пропорциональна углу атаки во второй степени. Из-за этого многие ученые считали, что невозможно изобрести крыло самолета малого размаха, но при этом с хорошими характеристиками. Лишь в конце IXX века братья Райт решили создать конструкцию небольшого размаха с нормальной силой подъема.

Центровка самолета

Что влияет на поднятие самолета в воздух?

Очень многие люди боятся летать на самолетах, потому что не знают, как он летает, от чего зависит его скорость, на какую высоту он поднимается и многое другое. Изучив это, некоторые меняют свое мнение. Каким же образом самолет поднимается вверх? Давайте разбираться.

Присмотревшись к крылу воздушного судна, можно увидеть, что оно не плоское. Нижняя часть гладкая, а верхняя – выпуклая. Благодаря этому, когда увеличивается скорость самолета, изменяется давление воздуха на его крыло. Так как внизу скорость потока небольшая, давление увеличивается. А поскольку вверху скорость увеличивается, давление уменьшается. За счет таких изменений самолет тянется вверх. Такая разница носит название подъемная сила крыла самолета. Этот принцип сформулировал Николай Жуковский в начале 20 века. При начальных попытках отправить судно в воздух применялся данный принцип Жуковского. Нынешние судна осуществляют полет со скоростью 180-250 км/ч.

Скорость лайнера при взлете

Когда лайнер набирает скорость, он непосредственно поднимается вверх. Скорость отрыва бывает разной, она зависит от габаритов самолета. Еще немаловажное влияние оказывает конфигурация его крыльев. Например, знаменитый ТУ-154 летает со скоростью 215 км/ч, а Boeing 747-270 км/ч. Чуть меньше скорость полета у Airbus A 380-267 км/ч .

Если брать средние данные, то сегодняшние лайнеры осуществляют полет со скоростью 230-240 км/ч. Однако скорость может меняться из-за ускорения ветра, массы лайнера, погоды, взлетной полосы и других факторов.

Скорость при посадке

Следует отметить, что посадочная скорость тоже непостоянна, как и взлетная. Она может меняться в зависимости от того, какая модель авиалайнера, какая площадь его, направление ветра и т. п. Но если брать средние данные, то самолет приземляется со средней скоростью 220-240 км/ч . Примечательно, что скорость в воздухе вычисляется относительно воздуха, а не земли.

Высота полета самолета

Многих интересует вопрос: какая высота полета авиалайнеров? Надо сказать, что и в этом случае конкретных данных нет. Высота может быть разной. Если же брать средние показатели, то пассажирские лайнеры летают на высоте 5-10 тыс. метров. Крупные пассажирские самолеты летают с большей высотой - 9-13 тыс. метров. Если самолет набирает высоту выше 12 тыс. метров, то он начинает проваливаться. Из-за того, что воздух разреженный, отсутствует нормальная сила подъема и имеется недостаток кислорода. Именно поэтому не стоит взлетать так высоко, поскольку есть угроза авиакатастрофы. Зачастую самолеты выше 9 тыс. метров не поднимаются. Примечательно, что и чересчур низкая высота негативно сказывается на полете. Например, ниже 5 тыс. метров нельзя летать, так как есть угроза недостатка кислорода, в результате чего снижается мощность двигателей.

Что может стать причиной отмены полета самолета?

  • низкая видимость, когда нет никакой гарантии, что пилот сможет посадить самолет в нужном месте. В таком случае лайнер может просто не увидеть взлетно-посадочную полосу, из-за чего может возникнуть авария;
  • техническое состояние аэропорта. Бывает, что какие-то оборудования в аэропорту перестали работать или случились неполадки в работе той или иной системы, из-за чего рейс может быть перенесен на другое время;
  • состояние самого пилота. Неоднократно случалось такое, что пилот не мог управлять рейсом в нужный момент и появлялась надобность в замене. Ни для кого не секрет, что в лайнере всегда два пилота. Именно поэтому необходимо определенное время, чтобы найти второго пилота. Таким образом, рейс может немного задержаться.

Лишь при полной подготовке и при благоприятных метеорологических условиях можно отправлять воздушное судно в полет. Решение об отправке принимает командир самолета. Он несет полную ответственность за то, чтобы самолет благополучно осуществил авиарейс.

Вконтакте

Один человек сказал: «Не чего не должно мешать крылу лететь». Крылу не нужны такие излишества как фюзеляж или какие-нибудь наплывы или ещё что-нибудь, что портит его аэродинамику. Когда всё убирается внутрь крыла получается очень изящные конструкции, которые радуют не только своим эстетичным видом но и не плохими лётными характеристиками.
Лично я обожаю летающие крылья из-за их простоты постройки. Но не стоит недооценивать летающее крыло. Самая большая проблема в проектировании ЛК это расчёт и подгонка центровки. Следующая фраза гласит: «Лучший самолёт это тот, у которого нет запаса». Все характеристики и конструктив должен быть подобран таким образом, чтобы решать текущие задачи и при этом не развалится в воздухе (у меня, кстати, такое было).

Год назад я думал о том, как построить собственное летающее крыло для пробы своих же сил. Я осознавал, что теорию знаю, но как применить эти знания на практике не догадывался. И чтобы систематизировать свои знания решил написать на Matlab r2009, что-то вроде калькулятора приблизительного расположения фокуса летающего крыла (ЛК). И получилась программа, на входе которой был текстовый файл характеристик крыла


А на выходе такая картинка


Данный алгоритм был представлен в статье на форуме http://www.rcdesign.ru/ Несущие крылья. Часть 2. Геометрия крыла.

Но я на этом не остановился и решил развить эту идею. Основная идея программы быстро превратить свою идею крыла в некие численные массогабаритные характеристики. И я добавил в программу расчёт центров тяжести, и перевёл ЛК в 3D. И в итоге получилась программа, которая может так.


возможности программы

программа способна рассчитывать:
- площадь крыла в плане
- площадь крыла в поперечной плоскости
- масса крыла
- масса оборудования крыла
- общая масса кр+оборуд
- общий центр тяжести X,Z
- фокус крыла по тангажу X,Z
- фокус крыла по рысканью X,Z
- нагрузку на крыло
-
программы выдаёт в трехмерном изображении
- геометрию крыла
- геометрию элементов
- расположение фокуса крыла в плане
- расположение фокуса в поперечной плоскости
- расположение центра тяжести крыла
- расположение центра тяжести оборудования
- расположение общего центра тяжести

Программа генерирует
- кривые профилей для построения в программе SolidWorks.
- Облака точек геометрии элементов в программе SolidWorks.

Набор данных параметров позволяет оценить характеристики ЛК.

Минусы программы
- низкая интерактивность
- недружелюбный интерфейс
- требуется знание Matlab

Работа с программой

Подготовка файлов

WinDev - папка содержащая программу предварительного расчёта летающих крыльев;
fanwing - папка с текстовыми файлами описывающими летающее крыло;
STEST - папка с сохраненными в текстовом формате кривых профилей и облака точек для SolidWorks.

Настройка работы программы

далее нужно обязательно настроить программу для правильной работы
- заполнить плотность материала, на основе которого будет считаться масса крыла, если оно выполнено из цельного куска.
- Настроить корневой каталог это сделано для того чтобы проще было переносить программу с одного компьютера на другой.
- Настроить расположение и название файлов, которые описывают геометрию крыла, геометрию профиля крыла, и геометрию и массовые характеристики элементов оборудования ЛК

Файл с описанием геометрии крыла

Тут крыло строится по набору хорд и описаний к ним.
Первый столбик это длины хорд в метрах.
Второй это фактический размах до хорды.
Смещение ¼ это смещение ¼ от хорды параллельно продольной оси самолёта изменяя это расстояние изменяется стреловидность крыла.
V - это угол Vобразности крыла при помощи этого возможно делать также и винглёты.
КН - это коэффициент толщины профиля.

Файл с описанием элементов конструкции

Файл с описанием профиля

Верхняя строка это проценты от хорды
Вторая строка это проценты от длинны хорды вверх
Вторая строка это проценты от длинны хорды вниз

Такие описания можно взять в атласе профилей.

Одним из важных этапов строительства авиамодели является расчет и проектирование крыльев. Для того, чтобы правильно спроектировать крыло, необходимо учесть несколько моментов: правильно выбрать корневой и концевой профили, правильно их выбрать исходя из нагрузок, которые они обеспечивают, а также правильно спроектировать промежуточные аэродинамические профиля.

С чего начинается конструирование крыльев

В начале конструирования на кальке был сделан предварительный эскиз самолёта в натуральную величину. В ходе этого этапа я определился с масштабом модели и с размахом крыльев.

Определение размаха

Когда предварительный размах крыла был утвержден, наступило время для определения веса. Эта часть расчета имела особое значение. Первоначальный план включал в себя размах крыльев в 115 см, однако, предварительный расчет показал, что нагрузка на крыльях будет слишком высокой. Поэтому я масштабировал модель до размаха в 147 см без учета законцовок крыльев. Такая конструкция оказалась более подходящей с технической точки зрения. После расчета мне осталось сделать весовую таблицу со значениями весов. В свою таблицу я также добавил усредненные значения веса обшивок, например, вес бальзовой обшивки самолёта был определен мной, как произведение площади крыла на два (для низа и верха крыла) на вес квадратного метра бальзы. Тоже самое было сделано для хвостового оперения и рулей высоты. Вес фюзеляжа был получен путем умножения площади боковой стороны, а также верха фюзеляжа на два и на плотность квадратного метра бальзы.

В результате я получил следующие данные:

  • Липа, 24 унции на кубический дюйм
  • Бальза 1/32’’, 42 унции на квадратный дюйм
  • Бальза 1/16’’, 85 унций на квадратный дюйм

Устойчивость

После определения веса были рассчитаны параметры устойчивости для того, чтобы убедиться, что самолёт будет устойчивым и все детали будут адекватного размера.

Для устойчивого полёта необходимо было обеспечить несколько условий:

  1. Первый критерий — значение средней аэродинамической хорды (САХ). Его можно найти геометрическим путем, если добавить к корневой хорде с двух сторон концевую, а к концевой хорде с двух сторон корневую, а потом соединить крайние точки вместе. В точке пересечения и будет находится центр САХ.
  2. Значение аэродинамического фокуса крыла составляет 0,25 от значения САХ.
  3. Этот центр необходимо найти как для крыльев, так и для рулей высоты.
  4. Далее определяется нейтральная точка самолёта: она показывает центр тяжести самолета, а также вычисляется вместе с центром давления (центром подъемной силы).
  5. Далее определяется статическая граница. Этот критерий оценивает устойчивость самолёта: чем он выше, тем больше устойчивость. Однако, чем более устойчивее самолёт, тем он более маневренный и менее управляемый. С другой стороны на слишком неустойчивом самолёте тоже нельзя летать. Среднее значение этого параметра — от 5 до 15%
  6. Также рассчитываются коэффициенты оперения. Эти коэффициенты используются для сравнения эффективности аэродинамики руля высоты через соотношение размеров и расстояния до крыла.
  7. Коэффициент вертикального оперения обычно находится между 0,35 и 0,8
  8. Коэффициент горизонтального оперения обычно между 0,02 и 0,05

Выбор правильного аэродинамического профиля

Выбор правильного профиля определяет правильное поведение самолёта в воздухе. Ниже я привожу ссылку на простой и доступный инструмент для проверки аэродинамических профилей. В качестве основы для выбора профилей я выбрал концепцию, согласно которой длина хорды на законцовке крыла равна половине длины хорды в корневой части. Наилучшее решение того, чтобы не допустить срыв потока на крыле, которое я нашел, заключалось в резком сужении крыла на законцовке без возможности сохранения управления самолётом до набора достаточной скорости. Я добился этого с помощью разворота крыла вниз на конце и через тщательный подбор корневых и концевых профилей.

В корне я выбрал аэродинамический профиль S8036 с толщиной крыла в 16% от длины хорды. Такая толщина позволила заложить лонжерон достаточной прочности, а также выдвижные шасси внутри крыла. Для концевой части был выбран профиль – S8037, который также имеет толщину в 16% от толщины хорды. Такое крыло будет уходить в срыв при большом коэффициенте подъёмной силы, а также при большем угле атаки, чем S8036 при том же числе Рейнольдса (этот термин служит для сравнения профилей разного размера: чем больше число Рейнольдса, тем больше хорда). Это значит, что при том же числе Рейнольдса в корневой части крыла срыв произойдет быстрее, чем на законцовке, но контроль за управлением сохранится. Однако, даже если длина хорды корня в два раза больше длины хорды законцовки, она имеет число Рейнольдса в два раза большее, а увеличение числа приведет к задерживанию сваливания. Именно поэтому, я развернул законцовку крыла вниз, так что оно перейдет в сваливание только после корневой части.

Ресурс для определения аэродинамических профилей: airfoiltools.com

Теория по основам конструирования крыльев

Конструкция крыла должна обеспечивать достаточную подъёмную силу для веса самолёта и дополнительных нагрузок, связанных с маневрированием. В основном это достигается с помощью использования центрального лонжерона, который имеет два пояса, верхний и нижний, каркаса, а также тонкой обшивки. Несмотря на то, что каркас крыла тонкий он обеспечивает крылья достаточной прочностью на изгиб. Также в конструкцию часто входят дополнительные лонжероны для уменьшения лобового сопротивления в передней части задней кромки. Они способны воспринимать как изгибающие нагрузки, так и увеличивать жесткость при кручении. Наконец передняя кромка может быть отодвинута назад за лонжерон для получения закрытого поперечного каркаса, который называется D-образным и служит для восприятия крутильных нагрузок. На рисунке наиболее часто встречающиеся профиля.

  1. Верхнее крыло имеет лонжерон двутаврового сечения, у которого каркас располагается в центре, а также переднюю кромку с обшивкой, которая называется D – трубкой. D – трубка позволяет увеличить жесткость при кручении, и может быть добавлена к любым другим конструкциям лонжеронов, а также может быть расширена до задней кромки для создания полностью обшитого крыла. У данного крыла задний лонжерон просто является вертикальной опорой. Также имеется простая плоскость управления, проще говоря, закрылок, подвешенный шарнирно вверху. Такую конструкцию легко воспроизвести.
  2. Второе крыло имеет C – образный лонжерон, который имеет усиленный основной лонжерон, лучше приспособленный для восприятия лобовых нагрузок. Крыло снабжено центральным шарниром, который уменьшает щель, а также лобовое сопротивление по сравнению с верхним шарниром.
  3. У третьего профиля лонжерон в виде трубы, такие обычно делаются из пластиковых трубок, их удобно изготовлять, но если трубки непрямые или скрученные, то скрутить крыло может стать проблемой. Частично проблему можно решить, используя дополнительно D – образную трубку. Кроме того, лонжерон сделан из С – образного профиля, что значительно увеличивает жесткость крыла. Петля представляет собой округленный профиль с точкой разворота в центре закругленной передней кромки для уменьшения петельной щели и для ровных краев.
  4. Четвертый профиль имеет полностью коробчатый лонжерон с каркасом как спереди, так и сзади. Зазор имеет ту же особенность, что и предыдущий профиль, и ту же самую плоскость управления. Но у него есть обтекатели сверху и снизу для скрытия щели.

Все эти конструкции крыльев являются типовыми для лонжеронов и для создания крепежных петель у радиоуправляемых самолётов. Эти конструкции без исключения являются единственным способом технической реализации закрылков и элеронов, а другие различные решения можно подогнать к ним же.

C – образный или коробчатый лонжерон?

Для своего самолёта я выбрал деревянный C – образный профиль лонжерона с прочной передней кромкой и простым вертикальным лонжероном. Полностью крыло обшито бальзой для создания жесткости при кручении и для эстетики.

Дерево было выбрано взамен пластиковой трубки поскольку самолёт спроектирован с 2 градусным внутренним углом, а соединение в виде пластиковой трубки в центре крыла не сможет долго сопротивляться изгибающим нагрузкам. C – образный профиль лонжерона является также более благоприятным по сравнению с двутавровым профилем, поскольку в лонжероне должен быть сделан слот на всю его длину для установки в решетку. Эта добавленная сложность не за счет заметного увеличения прочности и соотношения веса лонжерона. Коробчатый лонжерон также был отвергнут, поскольку он сильно увеличивает вес, однако, его не так сложно построить, а по прочности он один из лучших. Простой вертикальный лонжерон, совмещенный с петлевым обтекателем, вот таким был выбор конструкции крыла, когда остальная часть крыла обшита и достаточно прочна без каких либо дополнительных опор.

  • Лонжерон. Лонжерон крыла спроектирован для восприятия изгибающей нагрузки от подъёмной силы крыла. Он не предназначен для восприятия скручивающей силы, созданной аэродинамическими силами крыла, а нагрузка ложится на обшивку крыла. Это распределение нагрузки подходит для легкой и очень эффективной нагрузки, поскольку каждая деталь занимает именно своё место.
  • Полки лонжеронов крыла выполнены из броска липы размерами ¼ x ½ x 24’’. Липа была выбрана в качестве материала, поскольку хорошо обрабатывается и имеет хорошую прочность для своего веса. Кроме того, подкупает простота приобретения брусков подходящего размера в специализированных магазинах, поскольку у меня не было под рукой деревообрабатывающего станка для распиловки досок.
  • Каркас крыла сделан из липового листа, толщиной 1/32”, который крепится к полкам лонжеронам сверху и снизу. Подобный каркас является необходимостью поскольку он кардинально улучшает жесткость и прочность крыльев даже при очень малом весе.
  • Задняя кромка крыла/задний лонжерон выполнен из бальзового листа толщиной 1/16”, что помогает добавить жесткость при кручении, а также унифицировать нервюры крыла и крепить плоскости управления к задней части нервюр.

Проектирование нервюр с помощью AutoСAD

Оказывается, изготовление нервюр для трапециевидного крыла может стать вдохновляющим занятием. Есть несколько методов: первый метод основан на вырезании профиля крыла по трафарету сначала для корневой части, а потом для законцовки крыла. Он заключается в сочленении обоих профилей вместе с помощью болтов и вычерчивании по ним всех остальных. Этот метод особенно хорош для изготовления прямых крыльев. Основное ограничения метода – он подходит только для крыльев с незначительным сужением. Проблемы возникают из-за резкого роста угла между профилями при значительной разнице между хордой законцовки и хордой корня крыла. В этом случае во время сборки могут сложности из-за большого отхода дерева, острых углов и краёв нервюр, которые надо будет удалить. Поэтому я воспользовался своим методом: сделал свои собственные шаблоны для каждой нервюры, а затем обработал их так, чтобы получить идеальную форму крыла. Задача оказалась сложнее, чем я ожидал, поскольку шаблон корневой части отличался от законцовки кардинально, а все профиля между ними были комбинацией двух предыдущих, вместе с кручением и растяжением. В качестве программы проектирования я использовал Autodesk AutoCAD 2012 Student Addition, поскольку съел на этом собаку при моделировании RC моделей самолётов в прошлом. Проектирование нервюр происходит в несколько этапов.

Всё начинается с импорта данных. Самый быстрый способ для импорта аэродинамического профиля (профили можно найти в базах данных UIUC аэродинамических профилей) в AutoCAD, который я нашел, заключается в создании табличного файла в формате excel в виде таблицы с колонками координат точек профиля x и y. Единственное, что следует перепроверить — соответствуют ли первая и последняя точка друг другу: получается ли у вас замкнутый контур. Затем скопировать полученное назад в txt файл и сохранить его. После того, как это проделано, следует вернуться назад и выделить всю информацию на предмет, если вы случайно вставили заголовки. Затем в AutoCAD запускается команда «spline» и «paste» для обозначения первой точки эскиза. Жмем «enter» до конца выполнения процесса. Аэродинамический профиль в основном обрабатывается таким образом, что каждая хорда становится отдельным элементом, это весьма удобно для изменения масштаба и геометрии.

Рисование и взаимное расположение профилей в соответствие плану. Передняя кромка и лонжероны должны быть тщательно доведены до нужного размера, при этом надо помнить про толщину обшивки. На чертеже, следовательно, лонжероны должны быть нарисованы уже, чем они есть на самом деле. Желательно сделать лонжероны и переднюю кромку выше, чем они есть на самом деле, для того, чтобы рисунок лег ровнее. Также пазы на лонжеронах должны быть расположены таким образом, чтобы оставшаяся часть лонжерона уместилась в нервюрах, но осталась при этом квадратной.

На рисунке показаны основные аэродинамические профиля перед тем, как они будут разбиты на промежуточные.

Лонжерон и совместная с ним передняя кромка соединены вместе, чтобы потом их можно было исключить из построения.

Аэродинамические профили сопряжены вместе и образуют форму крыла при видимом лонжероне и передней кромке.

Лонжерон и передняя кромка удалены с помощью операции «subtract», остальные части крыла показаны.

Крыло вытягивается с помощью функции «solidedit» и «shell». Далее выделяются поочередно плоскости корневой части крыла и законцовки, удаляются, а то, что получается и есть обшивка крыла. Поэтому внутренняя часть обшивки крыла является основой для нервюр.

С помощью функции «плоскость сечения» формируются эскизы каждого профиля.

После этого под командой «плоскость сечения» выбирается создание раздела. С помощью этой команды созданные профили во всех точках профиля могут быть отображены. Для помощи в выравнивании нервюр крыльев я строго рекомендую создать на каждом сечении горизонтальную линию от задней кромки крыла до передней. Это позволит правильно выровнять крыло, если оно построено с кручением, а также сделать его прямым.

Поскольку эти шаблоны на самом деле созданы с учетом обшивки крыльев, внутренняя линия профилей является правильной линией для построения нервюр.

Теперь, когда все нервюры промаркированы с помощью команды «text», они готовы к печати. На каждой странице с нервюрами я разместил схематически коробку с площадкой, доступной для печати на принтере. Маленькие нервюры можно печатать на толстой бумаге, а для крупных аэродинамических профилей подойдет обычная бумага, которая затем усиливается перед вырезанием.

Комплектация деталей

После конструирования крыла, анализа и подбора всех необходимых для изготовления авиамодели деталей, был сделан список всего необходимого для постройки.


Основные данные F16

Таблица 1

1. Определение поперечной силы и изгибающего момента в расчётном сечении крыла

1.1 Определение подъёмной силы крыла

Величина подъёмной силы крыла определяется формулой:

где - полётный вес самолёта;

Эксплуатационная перегрузка;

Коэффициент безопасности;

1.2 Эпюра воздушной нагрузки на крыло

Разбиваем крыло на 10 условных сечений, и измеряем на чертеже (см приложение) длины полученных хорд bi, в дальнейшем подставляем их в формулы (3), (4), (5). Сами же подсчеты произведены в программном приложении Microsoft Excel (таблица 2.).

Распределение воздушной нагрузки на крыло в первом приближении принимается пропорциональным хордам и вычисляется по формуле:

где - величина погонной воздушной нагрузки на крыло;

Величина хорды сечения;

1.3 Эпюра нагрузки от массы крыла

Величина погонной нагрузки на крыло от его собственного веса определяется формулой:

где - вес крыла.

1.4 Эпюра нагрузки от массы топлива

Величина погонной нагрузки на крыло от веса топлива определяется формулой:

где - вес топлива.

1.5 Суммарная эпюра погонной нагрузки на крыло

Суммарная эпюра погонной нагрузки получена сложением эпюр погонной нагрузки на крыло от воздушной нагрузки, нагрузок от массы крыла и массы топлива.

1.6 Эпюра поперечных сил

Эпюра поперечных сил получена методом графического интегрирования эпюры суммарной погонной нагрузки на крыло, затем к ней прибавлены местные нагрузки от расположенных на крыле агрегатов - в данном случае на крыле нет никаких агрегатов.

1.7 Эпюра изгибающих моментов

Эпюра изгибающих моментов получена методом графического интегрирования эпюры поперечных сил.

Таблица 1.2

1.8 Величины поперечной силы и изгибающего момента в расчётном сечении крыла

Величины поперечной силы и изгибающего момента в расчётном сечении крыла - в зоне - сняты с полученных эпюр поперечной силы и изгибающего момента и составляют:

2. Проектировочный расчёт крыла в зоне

2.1 Исходные данные

подъемный крыло сечение обшивка

Длина хорды в заданном сечении: .

Величина усилий в заданном сечении: ; .

Доля изгибающего момента, воспринимаемого лонжеронами: ж=50%.

Материал силовых элементов: Д16Т, .

Положения лонжеронов: 1-го; 2-го.

Редукционные коэффициенты поясов лонжеронов, стрингеров и обшивок:

при работе на растяжение: ; ; ;

при работе на сжатие: ; ; .

Число стрингеров: , шаг h=0,098м.

2.2 Расчёт основных размеров сечения

2.3 Замена кессонной части крыла прямоугольным сечением из двух поясов и двух стенок

2.4 Замена действия действием пары сил и

2.5 Подбор размеров силовых элементов нижнего пояса

2.5.1 Определение размеров нижних поясов лонжеронов

2.5.2 Форма и размеры нижних поясов лонжеронов

2.5.3 Подбор стрингеров

Подходит профиль 410018, .

2.5.4 Определение толщины обшивки

Подходит обшивка толщиной 0,8 мм.

2.6 Подбор размеров силовых элементов верхнего пояса

2.6.1 Определение размеров верхних поясов лонжеронов

2.6.2 Форма и размеры верхних поясов лонжеронов

2.6.3 Подбор стрингеров

Подходит профиль 710022, .

2.6.4 Определение толщины обшивки

Подходит обшивка толщиной 1 мм.

2.7 Толщины стенок лонжеронов

3. Расчёт размеров соединительных болтов ОЧК крыла с центропланом

3.1 Расчет болтов для лонжеронов

Продольная сила в сечении соединения ОЧК с центропланом:

Так как лонжероны (верхние) воспринимают половину нагрузки, приходящей на верхний пояс, а количество болтов - 4 (см приложение), то диаметр болта определим из условия прочности по нормальным напряжениям.

Предположим, болты из стали 30ХГСА - допустимое напряжение (запас прочности учтен в п.1.1), где.

3.2.Расчет болтов для фитинга обшивки

Так как обшивка воспринимает половину нагрузки, приходящей на верхний пояс, а количество болтов - 7 (см приложение), шаг 90мм, то диаметр болта определим из условия прочности по нормальным напряжениям.

Подобные документы

    Техническое описание конструкции самолета "Су-26". Определение нагрузок на крыло. Определение крутящего момента и подбор толщины обшивки крыла. Подбор толщины стенок и сечений поясов лонжеронов в растянутой и сжатой зоне крыла, сечений стрингеров.

    курсовая работа , добавлен 14.06.2010

    Исходные геометрические характеристики элементов крыла и схема его нагружения. Задание свойств материалов для каждого элемента конструкции. Построение конечноэлементной модели и расчет ее устойчивости в Buckling Options. Перемещение лонжеронов крыла.

    курсовая работа , добавлен 16.03.2012

    Тактико-технические характеристики самолета Bf 109 G-2. Полетные случаи нагружения крыла при маневре. Построение эпюр внутренних силовых факторов по размаху крыла. Выбор конструктивно-силовой схемы. Подбор сечений элементов продольного набора крыла.

    курсовая работа , добавлен 13.04.2012

    Расчет основных элементов продольного, поперечного набора крыла самолета, элеронов, качалки, узлов крепления, обеспечение их прочности и устойчивости. Точность размеров, силовое взаимодействие с элементами конструкции, жесткие требования к стыковым узлам.

    курсовая работа , добавлен 13.05.2012

    Расчёт аэродинамических характеристик самолёта. Границы допустимых скоростей. Расчет нагрузок на крыло. Значения параметров расчетного сечения крыла, спроектированного по статическим нагрузкам. Зависимость веса самолета от времени в типовом полете.

    дипломная работа , добавлен 15.03.2013

    Технология производства лонжерона крыла самолета РСМ-25 "Robust" из композиционных материалов с подкосом. Определение нагрузок, действующих на крыло, обеспечение прочности и устойчивости конструкции; силовое взаимодействие, требования к стыковым узлам.

    дипломная работа , добавлен 16.03.2012

    Использование композиционных материалов в конструкциях летательных аппаратов. Расчет элерона ЛА в среде COSMOS/M. Построение конечно-элементной модели для поясов и стенок лонжеронов, нервюр, стрингеров и обшивки в напряженно-деформированном состоянии.

    курсовая работа , добавлен 29.06.2012

    Выбор прототипа самолета по его характеристикам, являющимися исходными данными к проекту. Назначение эксплуатационной перегрузки и коэффициента безопасности. Определение нагрузок, действующих на крыло и выбор типа конструктивно-силовой схемы крыла.

    методичка , добавлен 29.01.2010

    Нормирование нагрузок на крыло. Проектирование полок и стенки лонжерона. Расчет геометрических параметров сечения лонжерона. Проектирование узла крепления подкоса к лонжерону. Технологический процесс формообразования и контроль качества конструкции.

    дипломная работа , добавлен 27.04.2012

    Расчет заклепок, соединяющих пояс и стенку лонжерона, нижней и верхней проушины, стойки и опасного сечения D-D вилки. Определение суммарной силы, действующей на болт. Нахождение координаты центра масс. Связь стыка с поясом и стенкой бортовой нервюры.