Математическая оценка качества принятого решения. Математические методы и модели в принятии решений. Методы оценки управленческих решений

Как мы и сказали в заключение прошлого урока, принять решение - это лишь половина дела. Вторая половина - оценить, насколько оно было правильным, верным и эффективным. Важно это по той причине, что оценка позволяет понять, насколько грамотными были предпринятые действия, приведут ли они к успеху в будущем, и вообще, стоит ли на них рассчитывать. Оценка принятых решений - это своеобразная лакмусовая бумажка, проверяющая их на результативность. Однако очень важно понимать, что обычные решения в жизни и управленческие решения оцениваются по разным алгоритмам.

Оценка повседневных решений

Для начала немного повторимся: если перед вами встала необходимость принять какое-то сложное решение, последствия которого вас беспокоят, в первую очередь стоит несколько раз обдумать все ЗА и ПРОТИВ, оценить ситуацию и возможные варианты ее разрешения. принятия решения - это первый шаг на пути к его эффективности.

Конечным продуктом анализа принятого решения всегда будет выступать результат. На основе его можно будет судить, достигнута ли цель, какие были задействованы для ее достижения ресурсы, сколько было потрачено сил и времени, что получилось в итоге, и стоила ли игра свеч.

Итак, если принятое решение связано с какими-либо исчисляемыми величинами, его эффективность вполне поддается вычислению в относительных или абсолютных единицах. Например, если вы решили , рассчитывая выйти на новый уровень дохода, оценить эффективность своего решения вы можете уже по истечении месяца или полугодия. Если вы решили запустить новую рекламу своего продукта, понять, насколько было эффективно это решение, вы сможете, установив прирост клиентов, увеличение процента продаж и чистую прибыль.

В случае, когда решение связано с величинами неисчисляемыми, его оценка происходит иначе. Нужно понять, достигли ли вы поставленного изначально результата. К примеру, поставив перед собой задачу повысить свою личную продуктивность и начать больше успевать, вы решили . Подвести итоги можно будет уже через неделю, проставив галочки рядом с выполненными делами в своем списке.

Аналогичным образом производится оценка принятых решений и в любой другой сфере жизни. Схема предельно проста: цель либо достигается, либо нет. Если она достигнута, вы все сделали правильно, если же нет - нужно что-то менять. Кроме того, оценка эффективности может осуществляться и с оглядкой на затраченные ресурсы: чем меньше сил, времени, денег и других средств вы израсходовали на реализацию своего решения, тем оно эффективнее. Все просто.

Как мы видим, в обычной каждодневной жизни делать анализ принятых решений достаточно легко. Но есть другая категория решений - управленческие, и их анализировать намного сложнее. На эту тему пишутся целые книги и пособия, и рассмотреть все детали в одном уроке, к сожалению, не получится. Однако указать на основы этого процесса вполне реально. Этим мы и займемся.

Основы оценки управленческих решений

Принятие любого управленческого решения можно назвать промежуточным этапом между управленческим решением и управленческим воздействием. Это в свою очередь говорит о том, что эффективность такого решения проявляется в совокупности эффективности его разработки и реализации.

Всего существует более шести десятков всевозможных частных показателей эффективности деятельности организации. К ним относятся оборачиваемость оборотных средств, рентабельность, окупаемость вложений, соотношение темпов роста производительности труда и средней заработной платы и т.д.

Оценка эффективности управленческих решений предполагает использование понятия совокупного экономического эффекта, т.к. в полученные результаты в обязательном порядке включается трудовой вклад людей.

Следует сказать также, что для организаций очень важно удовлетворять требования потребителей и в то же время улучшать эконмические показатели своей деятельности. Исходя из этого, при оценке эффективности решений появляется необходимость брать в расчет два аспекта результативности - социальный и экономический.

Проиллюстрировать алгоритм оценки эффективности управленческих решений можно, взяв для примера торговую организацию. Так, чтобы понять, результативным было решение или нет, необходимо вести раздельный учет доходов и расходов касаемо разных товарных групп. Учитывая, что на практике делать это весьма сложно, в процессе анализа распространено использование так называемых удельных качественных показателей. Здесь таковыми являются прибыль из расчета на 1 млн. рублей товарооборота и издержки обращения из расчета на 1 млн. товарных запасов.

Эффективность управленческих решений в торговых организациях выражается совокупно в количественной форме - это прирост объемов товарооборота, повышение скорости оборачиваемости продукта и снижение суммы товарных резервов.

Если же нужно понять итоговый финансово-экономический результат реализации управленческих решений, следует установить, насколько увеличиваются доходы конкретной организации и насколько сокращаются ее расходы.

Определить экономическую эффективность решения, повлиявшего на рост товарооборота и увеличение прибыли, можно при помощи формулы:

Эф П*Т П * (Тф — Тпл), где:

  • Эф - показатель экономической эффективности
  • П - показатель прибыли из расчета на 1 млн. рублей товарооборота
  • Т - показатель прироста объема товарооборота
  • Тф - показатель фактического товарооборота, наблюдающийся после реализации управленческого решения
  • Тпл - показатель планового товарооборота (либо товарооборота за сопоставимый отрезок до реализации управленческого решения)

В данном примере экономическую эффективность отражает снижение показателей издержек обращения (коммерческих затрат, затрат на продажу), которые приходятся на остаток товаров. Отсюда и повышение показателей прибыли. Эффективность здесь определяется по формуле:

Эф =ИО*З ИО*(З2 — З1), где:

  • Эф - показатель экономической эффективности конкретного управленческого решения
  • ИО - показатель объемов издержек обращения из расчета на 1 млн. рублей товарных запасов
  • З - показатель величины изменений (уменьшений) товарных запасов
  • 31 - показатель объемов товарных запасов до реализации управленческого решения
  • 32 - показатель объемов товарных запасов после реализации управленческого решения

В нашем случае экономическая эффективность управленческого решения отразилась и на увеличении темпов оборачиваемости товаров. Ее показатель можно рассчитать по формуле:

Эф Ио*Об Ио (Об ф — Об пл), где:

  • Эф - показатель экономической эффективности управленческого решения
  • Ио - показатель одновременного объема издержек обращения
  • Об - показатель повышения темпов оборачиваемости товаров
  • Об пл - показатель оборачиваемости товаров до принятия управленческого решения
  • Об ф - показатель оборачиваемости товаров после принятия управленческого решения

В дополнение ко всему для анализа эффективности управленческих решений принято использовать несколько специализированных методов, упрощающих процедуру и приводящих к более точным результатам.

Методы оценки управленческих решений

В процессе оценки эффективности управленческих решений применяется семь основных методов:

  • Индексный метод. Его применяют для анализа наиболее сложных явлений с элементами, не поддающимися измерениям. Индексы здесь играют роль относительных показателей. Они помогают оценить, как выполняются плановые задания, и определить динамику разных процессов и явлений. Индексный метод призван помочь разложить обобщающий показатель на факторы относительных и абсолютных отклонений.
  • Балансовый метод. Его суть состоит в том, что сопоставляются взаимосвязанные показатели работы организации. Цель - определить влияние отдельных факторов и найти резервы для повышения эффективности компании. Взаимосвязь отдельных показателей представляется равенством итогов, которые получены после определенных сопоставлений.
  • Метод элиминирования. Он обобщает два первых метода и предлагает возможность для определения воздействия какого-то одного фактора на общий показатель деятельности компании. При этом предполагается, что все другие факторы функционировали в одной среде - согласно плану.
  • Графический метод. Является способом наглядного представления работы организации, определения комплекса показателей и оформления результатов произведенных аналитических мероприятий.
  • Метод сравнения. Предлагает возможность оценки работы компании, выявления отклонений фактических показателей от базисных величин, установления их причин и поиска резервов последующего улучшения деятельности.
  • Функционально-стоимостный анализ. Его можно назвать методом системного исследования, применяющегося, исходя из назначения объекта изучения. Его задача - повысить полезный эффект (отдачу) совокупных затрат за жизненный цикл объекта. Отличительной особенностью является то, что метод позволяет установить целесообразность ряда функций, которые будут выполняться проектируемым объектом в конкретной среде, а также проверить необходимость каких-то функций объекта, который уже существует.
  • Экономико-математические методы. Применяются, когда требуется выбрать оптимальные варианты, определяющие специфику управленческих решений в текущих или предполагаемых экономических условиях. Задач, которые решают экономико-математические методы, множество. Среди них установление наилучшего ассортимента производимого продукта, оценка плана производства, сравнительный анализ экономической эффективности применения ресурсов, оптимизация производственной программы и другие.

На то, насколько будет эффективна работа организации, самым серьезным образом влияют управленческие решения. Это причина, по которой важно максимально овладеть управленческим аппаратом, теорией и практикой разработки и реализации решений. Это значит, что нужно обладать навыком выбора лучшей альтернативы среди нескольких вариантов.

Любые управленческие решения обусловлены достоверностью и полнотой имеющихся данных. Поэтому они могут приниматься как в условиях определенности, так и в условиях неопределенности.

Принятие управленческих решений как процесс представляет собой циклическую последовательность действий ответственного лица по разрешению актуальных проблем. Эти действия заключаются в анализе ситуации, разработке возможных путей решения, выборе и осуществлении лучшего из них.

Практика показывает, что на принятие решений на любом уровне подвержено погрешностям. На это влияют многие причины, т.к. экономическое развитие включает в себя большое количество самых разных ситуаций, которые нужно разрешать.

Особое место среди причин того, почему управленческие решения оказываются малоэффективными, занимает несоблюдение или банальное незнание технологии их генерации и последующего выполнения. А для этого принято использовать теоретическую информацию, методы и техники, о которых мы говорили в предыдущих уроках.

Все, сказанное выше, безусловно, описывает лишь базовые предпосылки оценки эффективности управленческих решений. Чтобы правильно применять их на практике, необходимо либо иметь соответствующее образование, либо погрузиться в изучение специализированной литературы, т.к. есть огромное количество тонкостей, нюансов, методик и чисто технических данных, которые нужно изучить, усвоить и освоить. Этот урок может служить отправной точкой для последующего углубления в специфику оценки эффективности управленческих решений.

В заключение же нашего курса хотелось бы осветить еще одну тему, знания в которой просто необходимы для принятия правильных решений в жизни, обучении и на работе. Это тема психологии принятия решений. И рассмотрим мы ее с позиции Даниэля Канемана - психолога и одного из основоположников поведенческих финансов и психологической экономической теории. В своих объяснениях иррационального отношения людей к риску в управлении своим поведениям и принятии решений он объединяет когнитивистику и экономику. Идеи Канемана окажут вам существенную поддержку в повышении своей эффективности.

Хотите проверить свои знания?

Если вы хотите проверить свои теоретические знания по теме курса и понять, насколько он вам подходит, можете пройти наш тест. В каждом вопросе правильным может быть только 1 вариант. После выбора вами одного из вариантов, система автоматически переходит к следующему вопросу.

В практической деятельности специалистов по БИ важную роль играет имеющаяся математическая база. Именно благодаря различным методам количественного анализа, построения экономико-математических моделей, анализа и синтеза на основе системного подхода возможно грамотное управление как отдельными сферами профессиональной деятельности, так и целыми предприятиями, отраслями и даже странами. Особое значение при этом имеют оптимизация и принятие решений, на что и направлены многие существующие методы и инструменты.

Математические методы всегда играли ведущую роль в решении различных прикладных задач бизнеса. Именно благодаря им изучались общие закономерности процессов управления и передачи информации. Это осуществлялось на основе изучения множества теорий, принципов и концепций: теории автоматов, теорий принятия решений и оптимального управления, теории алгоритмов, теории обучающихся систем и многих других. С развитием ИТ математическая база не только стала использоваться для дальнейшей автоматизации моделей и организации вычислений, но и обеспечила возможности для развития технологий в новом направлении.

Например, теория автоматов позволяет представлять вычислительные машины в виде математических моделей и, таким образом, лежит в основе различных цифровых технологий и ПО, применяясь при разработке языков программирования, компиляторов и пр.

В тесной взаимосвязи с теорией автоматов находится теория алгоритмов, так как преобразуемая автоматами информация для каждого момента времени позволяет задавать шаги алгоритма. Современная теория алгоритмов также занимается проблемами формулировки различных задач в терминах формальных языков, вычисляет трудоемкость задач и потребность алгоритма в ресурсах, осуществляет поиск критериев качества алгоритмов.

Среди теорий математики и кибернетики крайне важной является теория принятия решений. Данная область исследований изучает закономерности выбора того или иного альтернативного варианта решения, а также занимается поиском наиболее выгодного из них. В числе некоторых из актуальных вопросов в современной теории принятия решений - теория коллективного выбора, например, в части анализа поведения банков или анализа распределения влияния участников какой-либо организации.

Наиболее близкой к теории принятия решений является теория оптимального управления. Ее отличает работа с иерархическими многоуровневыми системами (например, различного масштаба компаниями), для управления которыми требуются специальные методы анализа, позволяющие сформировать многоцелевые и многофакторные системы управления. Системы переводятся в новое состояние по конкретному критерию оптимальности (отсюда название теории), которым может быть минимизация трудозатрат, денежных и прочих ресурсов и пр. В случае если исходных данных для решения задачи недостаточно, а традиционные количественные методы неприменимы, используются также различные алгоритмы на основе теории нечетких множеств и теории принятия решений в условиях неопределенности. Их крайняя реализация - класс эвристических методов, представляющих собой неформализованные методы, основанные на аналогиях, прошлом опыте, экспертных оценках и прочей информации.

Соответственно для понимания и применения всех этих теорий необходим аппарат математического анализа, линейной алгебры, нелинейного программирования, теории вероятностей, комбинаторики, математической статистики, эконометрики и многие другие теоретико-прикладные дисциплины.

Существует множество областей деятельности, в которых широко используются комбинации вышеописанных дисциплин. Одной из наиболее масштабных областей является исследование операций, к которому относятся теория игр и сетевые методы планирования, теория массового обслуживания, теория расписаний, методы искусственного интеллекта и др. Системный подход в данном случае является основополагающим методологическим принципом в исследовании операций. Благодаря ему формируется единое целостное видение проблемы, для которой составляется определенная математическая модель, описывающая в математических терминах поведение системы/процесса/операции/объекта и исследуемая в дальнейшем. Возможностей построения моделей при этом существует огромное множество: линейные и нелинейные, детерминированные или стохастические, статические или динамические, дискретные или непрерывные, структурные или функциональные (так называемые модели черного ящика). Так, совместное использование теории систем массового обслуживания и математической теории расписаний представляет собой эффективный математический аппарат моделирования организации обслуживания и планирования обработки вычислительных задач в многомашинных и мультипроцессорных вычислительных системах.

Для поддержки математического моделирования с помощью компьютерных систем созданы такие известные программные решения, как Mathematica, Mathcad, MATLAB, AnyLogic.

Как уже было сказано, во многих отраслях деятельности - от биологии до строительства или экономики - важен поиск наиболее эффективных и оптимальных решений. Ярким примером являются геоинформациопные системы, которые благодаря заложенным в них моделям способны вычислить кратчайший маршрут для объезда пробок или найти ближайший кинотеатр. Среди теорий и методов, благодаря которым создание таких моделей стало возможным, - теория графов. В ее основе - представление различных объектов, событий и явлений в виде множества вершин (узлов) и ребер, соединяющих их. В случае геоинформационной системы различные дома и учреждения могут рассматриваться как вершины графов, а дороги, линии электропередач и прочие сети - как ребра графов.

Теория графов, применяемая в химии, позволяет вычислить число возможных изомеров различных органических соединений, а в коммуникационных системах - осуществлять маршрутизацию данных. Подобная же логика может быть применена и в других областях - при календарном планировании производственных процессов, расчете сетей массового обслуживания, анализе продуктовых потоков и в других целях.

Для более наглядного представления о самих методах, применяющихся для решения подобных задач, рассмотрим известную задачу коммивояжера. Ее суть - в поиске оптимального пути (которым может быть самый быстрый, самый короткий, самый дешевый маршрут) через несколько городов с заходом в них минимум один раз и конечным возвратом в исходный город. Разумеется, первым вариантом решения задачи будет ручной перебор всех возможных маршрутов. Однако в случае, когда количество вершин графа (= городов в маршруте) будет исчисляться десятками и сотнями, эффективность подобных вычислений крайне сомнительна. Поэтому оптимальная вариация данного метода - неявный перебор, или метод ветвей и границ. Он основан на идее последовательного разбиения множества допустимых решений, элементы которого на каждом шаге анализируются на предмет содержания в них оптимального решения. В случае поиска минимума (минимальное время, минимальное расстояние и т.д.) для подмножества нижняя оценка целевой функции сравнивается с верхней оценкой функционала. Алгоритм завершает работу, когда просмотрены все элементы разбиения и найдено решение с самой минимальной верхней оценкой.

Существуют также многие другие методы поиска решения: различные виды переборов, «метод ближайшего соседа», «метод имитации отжига», «алгоритм муравьиной колонии», «метод эластичной сети», которые различаюгся степенью точности, трудоемкостью и, конечно, применяемым математическим аппаратом.

Например, известный алгоритм Дейкстры, определяющий кратчайшее расстояние от одной выделенной вершины до всех остальных вершин, использует протоколы маршрутизации SSPF и IS-IS.

Существует также другой класс задач, относящихся к функциям нескольких переменных, для которых имеются различные связи и ограничения. Их рассмотрение проводится численными методами в рамках раздела нелинейного программирования. Например, если для промышленного предприятия целевой функцией будет являться функция прибыли, то ограничениями в таком случае станут изменяющиеся по определенным принципам ресурсы, рабочая сила, постепенно снижающаяся производительность оборудования и пр. Однако данная задача актуальна и для естественных наук, бизнеса, экономики, вычислительной техники и других сфер.

Большинство из вышеупомянутых задач невозможно рассматривать вне привязки еще к одному важнейшему разделу математики и статистики - теории вероятностей. Она изучает случайные явления, события и величины, их свойства и закономерности и строит функции распределения возможных значений величин. Примером использования теории может быть простейший расчет планового числа бракованных изделий на производстве исходя из вероятности их появления при различных условиях и размеров партии изделий.

Теория случайных процессов (броуновское движение, случайные блуждания, полеты Леви) эффективно используется для моделирования колебаний на фондовых рынках.

Такие сферы, как создание биржевых торговых роботов или оценка кредитных рисков, моделирование химических процессов, разработка систем компьютерного зрения или даже таргетинг рекламы, используют именно методы теории вероятностей. Разумеется, в зависимости от имеющихся данных и применяемых инструментов для каждой задачи будут также меняться трудоемкость решения и степень погрешности результата.

Другим примером для теории вероятностей, уже напрямую связанным с областью комбинаторики, являются криптоанализ и шифрование данных, например, взлом паролей через сравнение с наиболее стандартным списком кодов и затем определение вероятности размещения определенных элементов кода в конкретной последовательности через семантический анализ или анализ расположения различных клавиш на устройстве ввода. Комбинаторика является важной составляющей математического аппарата БИ. Она изучает различные дискретные объекты и их множества (сочетания, перестановки, размещения и перечисления) и тесно связана с теорией графов, которую некоторые исследователи даже причисляют к одной из областей комбинаторики. Очень многие сферы деятельности покрываются комбинаторными методами - от образования (составление расписания занятий) до военного дела (расположение подразделений), от экономики (анализ вариантов операций с акциями) до азартных игр (и расчета частоты выигрышей).

Наконец, следует сказать еще о такой науке, как математическая статистика, которая в значительной степени опирается на теорию вероятностей. Именно статистика предоставляет методы регистрации, описания и анализа различных экспериментов и наблюдений для дальнейшего построения моделей процессов и явлений. При этом некоторые методы математической статистики направлены исключительно на описание данных, их визуализацию и интерпретацию, другие - на оценку и проверку гипотез. Например, на это направлен факторный анализ, который позволяет изучать взаимосвязи между значениями переменных и выявлять скрытые переменные факторы, создающие корреляции между переменными.

Благодаря кластерному, дискриминантному, корреляционному анализу и другим методам, пришедшим из математической статистики, возможности современных ИС (от пакетов SAS, SPSS, Statistica до модулей ERP/BI и других систем) позволяют осуществлять имитационное моделирование, проводить распознавание образов, аналитическую обработку данных и решать многие другие комплексные задачи работы со сложными системами.

Одним из последних направлений в исследовании сложных динамических систем является синергетика, включающая теорию динамического хаоса, катастроф и бифуркаций, изучающая закономерности сложных неравновесных процессов на основе присущих им принципов самоорганизации. Здесь, прежде всего, следует отметить успехи синергетического подхода в моделировании нелинейной динамики агрегированных рыночных цен и финансовых странных аттракторов, взаимодействий в системе «вирус - антивирус» вычислительных комплексов.

В данном обзоре приведены не все математические методы, которые могут использоваться специалистами БИ. Автор надеется, что коллеги по БИ сделают полный обзор математических методов системного анализа в своих будущих работах.

Таким образом, среди сфер применения системного подхода :

  • совершенствование бизнес-процессов через измерение и оценку (внедрение систем менеджмента качества);
  • совершенствование системы управления организации;
  • оптимизация различных процессов через разработку математических моделей, алгоритмических и программных решений;
  • исследование операций при работе в области информационной бизнес-аналитики;
  • сценарная оптимизация динамических процессов;
  • проектирование и расчет сложных систем.
  • По материалам учебника по дисциплине «Моделирование и анализ бизнес-процессов»коллектива авторов (А. И. Громов, В. Г. Чеботарев, Я. В. Горчаков, О. И. Бойко). М.: Изд-воГУ ВШЭ, 2008).

МАТЕМАТИЧЕСКИЕ МЕТОДЫ ПРИНЯТИЯ УПРАВЛЕНЧЕСКИХ РЕШЕНИЙ В УСЛОВИЯХ НЕОПРЕДЕЛЕННОСТИ

Кравчук Алина Сергеевна

Студентка 4 курса, кафедра экономической кибернетики ВНАУ. г. Винница

Черняк Наталия Ивановна

научный руководитель, к.т.н., доцент ВНАУ, г. Винница

Введение. На современном этапе развития рыночных отношений, при сложных экономических и информационных связях между субъектами хозяйствования, в процессе управления предприятием возникают проблемы, зависящие от значительного количества внешних и внутренних факторов, быстро изменяющиеся во времени и разнонаправлено влияющие на эффективность функционирования предприятия. В таких условиях при разработке и принятии управленческих решений необходимо учитывать условия неопределенности, анализировать их, использовать соответствующие модели и методы принятия решений.

Анализ последних исследований и публикаций. Проблемы разработки и принятия управленческих решений в условиях неопределенности рассмотрены в работах таких отечественных и зарубежных ученых, как Р. Акофф, И.О. Бланк, В.В. Витлинский, В. Г. Вовк, А. К. Камалян, Ю. Г. Лысенко, М. Мескон, Д. О. Новиков, В. С. Пономаренко, О. И. Пушкарь, Т. Саати, Г.Саймон, Э. А. Трахтенгерц, Р. А. Фатхутдинов, Дж. Форрестер и др.

Целью исседования является изучение модели принятия решений в условиях неопределенности, базирующейся на теоретико-игровой концепции с применением классических критериев оценки альтернатив из множества возможных вариантов.

Основные результаты исследования. Неопределенность - фундаментальная характеристика недостаточной обеспеченности процесса принятия экономических решений знаниями относительно определенной проблемной ситуации. Неопределенность можно трактовать и детализировать как недостоверность, неоднозначность .

Для обоснования решений в условиях неопределенности, когда вероятности возможных вариантов обстановки неизвестны, разработаны специальные математические методы, которые рассматриваются в теории игр. Теория игр исследует взаимодействие индивидуальных решений при некоторых предположениях относительно принятия решений в условиях риска, общих условий окружающей среды, кооперативного или некооперативного поведения других индивидов. Целью теории игр есть предвидение результатов стратегических, оперативных игр, когда участники не имеют полной информации о намерениях друг друга .

Пусть информационная ситуация характеризуется множеством

Где – множество решений (альтернатив) объекта управления,

– множество состояний неопределенной экономической среды,

– функционал оценивания (матрица оценивания), определенный на и и тот, который .

Качество принимаемого решения, а также методика его принятия, зависят от степени информированности субъекта управления. Под информационной ситуацией с точки зрения субъекта управления подразумевают определенную степень градации неопределенности выбора средой своих состояний в момент принятия решения .

Рассмотрим классификатор информационных ситуаций, связанных с неопределенностью среды:

И 1 первая информационная ситуация характеризуется заданным распределением априорных вероятностей на элементах множества состояний среды;

И 2 вторая информационная ситуация характеризуется заданным распределением вероятностей с неизвестными параметрами или факторами среды (достаточная по объему информация, выдвинута гипотеза относительно класса функций, которому принадлежит функция плотности распределения вероятности и на основе имеющейся информации необходимо оценить параметры, которые характеризуют этот класс функций);

И 3 третья информационная ситуация характеризуется заданной системой линейных или нелинейных соотношений на элементах априорного распределения состояний среды.

В пределах первой – третьей информационных ситуаций в условиях неопределенности среды и риска при осуществлении процесса принятия эффективных решений используют критерии Байєса, модульный, минимальной дисперсии, Гермейера, максимакса .

И 4 четвертая информационная ситуация характеризуется неизвестным распределением вероятностей на элементах (параметрах, факторах и т.п.) множества состояний среды. В такой ситуации целесообразно использование критериев Джейнса, Лапласа;

И 5 пятая информационная ситуация характеризуется антагонистическими интересами среды, в процессе принятия решений оценку альтернатив осуществляют за критериями Вальда, Севиджа;

И 6 шестая информационная ситуация характеризуется как промежуточная между И 1 и И 5 при выборе среды своих состояний в процессе принятия решений за критериями Гурвица, Ходжа-Лемана.

Приведенные информационные ситуации являются глобальными характеристиками степени неопределенности состояний с точки зрения субъекта управления .

Пусть функционал имеет положительный ингредиент (задача оптимизации категорий полезности, выигрыша, прибыльности, вероятности достижения определенной стратегии), т.е.

, (1)

И пусть для отрицательного ингредиента (оптимизации расходов, ущерба, риска), т.е.

, (2)

Функция риска при осуществлении определенной стратегии определяется как линейное преобразование положительно или отрицательно заданного ингредиента функционала V к относительным единицам измерения составляющих функционала V .

Так, для и определенной информационной ситуации, а также для зафиксированного состояния среды , величина риска равна:

,

Для соответственно

Таким образом, риск определяется как разность решения при наличии точных данных состояния среды и результата, который может быть достигнутым, когда данные состояния среды не определенные.

Определение альтернатив осуществляется при условиях, например, информационных ситуаций І 1 – І 6 соответственно по критериям:

(критерий Вальда); (3)

Критерий Вальда выражает позицию крайней осторожности. Это свойство разрешает считать данный критерий одним из фундаментальных.

(критерий Севиджа); (4)

Критерий Севиджа довольно часто используется в практической деятельности при принятии управленческих решений на продолжительный период: например, при распределении капитальных вложений.

(критерий Лапласа); (5)

Критерий Лапласа используется при условии, когда вероятности возможных состояний систем неизвестны, т.е. в условиях полной неопределенности.

(критерий максимакса); (6)

С помощью критерия максимакса определяется стратегия, которая максимизирует максимальные выигрыши для каждой информационной ситуации.

(критерий Гермейєра); (7)

Критерий Гермейера является критерием крайнего пессимизма с учетом вероятности состояний внешней среды.

Переменные определяют объемы ресурсов в значении прибыли , или расходов , следовательно, зная цену за единицу ресурсов, которые предлагаются к расходам, можно рассчитывать объемы прибыли или потерь от осуществления той или другой стратегии относительно оптимальных альтернатив.

Если эксперты не могут (или имеют сомнения) определить состояние внутренней среды ресурсов в определенный период их использования к условиям поведения внешней среды за информационными ситуациями И 1 И 6 , то проводится оценивание альтернатив за всеми критериями . Определение оптимальной альтернативы в этом случае осуществляется так называемым методом голосования, сущность которого состоит в выборе той альтернативы, за которую проголосовало наибольшее количество экспертов.

Выводы. Неопределенность – это непреодолимое качество рыночной среды, обусловленное влиянием большого количества разных по природе и направленности факторов, которые в совокупности невозможно оценить или измерить. При формировании управленческого решения в условиях неопределенности использования одного из приведенных критериев недостаточно для рационального выбора решения, так как может привести к к значительным потерям экономического, социального и иного содержания. Необходимо учитывать фактор времени, объединять критерии между собой и проводить анализ критериев на уже известных ситуациях для проверки достоверности полученных результатов. Целесообразно также же объединять применение данных критериев с методом экспертных оценок.

Список литературы:

1. Арефьева А. А. Модели принятия экономико-организационных решений повышения эффективности использования производственного потенциала и критерии целесообразности его применение / А. А. Ареф"єва, В. М. Михайленко, О. Л. Горяча // Проблемы информационных технологий. – 2007. – № 1. – С. 14-23.

2. Витлинский В. В.Экономический риск: игровые модели: Учебн. пособие / В. В. Витлинский, П. И. Верченко, А. В. Сигал, Я. С. Наконечный; За ред. д-ра экон. наук, проф. В. В. Витлинского. – К.: КНЭУ, 2002. – 446 с.

3. Клименко С. М., Дуброва О. С.Обоснование хозяйственных решений и оценка рисков: Учебн.-метод. пособ. для самост. изуч. дисц. – К.: КНЭУ, 2006. – 188 с.

4. Левикин В. М. Влияние информационных технологий на реинжиниринг бизнес-процессов предприятия / В. М. Левикин, М. Г. Капустин // Новые технологии. – 2005. – № 3 (9). – С. 73.

5. Петров Э. Г. Управление функционированием и развитием социально-экономических систем в условиях неопределенности / Э. Г. Петров, Н. А. Соколова, Д. И. Филипская // Вестник Херсонского национального технического университета. – 2007. – Вып. 27. – С. 156–159.

Критерии принятия решений и их шкалы

Из схемы процесса обоснования решений, приведенной на рис. 1.5, видно, что этот процесс завершается фазой оценки альтернатив. Именно в рамках этой фазы напрямую работает принцип измерения . При этом практически неразрывно, одновременно решаются два взаимосвязанных вопроса: выработка (формирование) критерия и получение оценок критерия для каждой из сформированного ЛПР множества допустимых альтернатив.

Критерий (функция цели, показатель) - это специальная функция, заданная в номинальной , числовой или количественной шкале, областью определения которой служит множество альтернатив .

Критерий предназначен для измерения степени эффективности (вклада, полезности или ценности) каждой альтернативы в отношении достижения цели операции. Те значения, которые эта функция принимает, называют оценками критерия .

Измерение - это процесс приписывания объектам таких символов, сравнение значений которых позволяет делать выводы о связи объектов между собой. Для ТПР это означает следующее: если ЛПР удалось подобрать такой критерий для оценки альтернатив, что у одной из них оценка критерия выше, чем у других, то можно предположить, что, выбрав альтернативу с наибольшим (максимальным) значением оценки критерия, ЛПР тем самым выберет наилучшую альтернативу.

где - альтернативы; - значения оценок критерия для альтернатив; - уровни полезности для ЛПР полученных значений оценок соответственно; - символ, означающий нестрогое превосходство для альтернатив и нестрогое неравенство для оценок (чисел); Û - знак двойной импликации ("тогда и только тогда", "необходимо и достаточно").

Соотношение (1.1) следует понимать так: если какая-то альтернатива не хуже какой-то другой (в нашем случае альтернатива не менее предпочтительнее, чем альтернатива ) то значение полезности для более предпочтительной альтернативы должно быть не ниже, чем для менее предпочтительной (в нашем случае функция полезности должна иметь значение не меньше чем . При этом мы обязательно будем полагать (и это особенно важно), что и обратное тоже верно (знак двойной импликации "тогда и только тогда" в выражении на это указывает).

Именно возможность "обратного прочтения" выражения (1.1) позволяет сделать важный вывод: если найдены альтернативы, обладающие максимальной полезностью, то они, скорее всего (с точностью до построенной модели u (Х) предпочтений) будут наилучшими решениями.

Таким образом, из соотношения (1.1) немедленно следует и формальное правило выбора наилучшей альтернативы:

, (1.2)

где - наилучшая альтернатива; - множество альтернатив.

Теория измерения разработала широкий арсенал разнообразных по своим свойствам шкал для измерения значений критериев. Эти шкалы позволяют в наибольшей степени обеспечить требование высокой информативности при решении задачи выбора наилучшей альтернативы и одновременно добиться достаточной простоты и экономии средств при измерениях.

Так, если целью измерения является разделение объектов (в нашем случае это альтернативы) на классы по признакам типа "да - нет", "свой - чужой", при годный - непригодный" и т. п., то используют так называемые номинальные или (классификационные ) шкалы. При этом любые формы представления оценки в номинальной шкале, которые не позволят отождествить объекты из разных классов между собой, будут одинаково подходящими. Так, часто при моделировании предпочтений в качестве градаций номинальных шкал используют шкалу целых чисел и даже бинарную шкалу со значениями (1; 0). Например, ЛПР может допустить считать все, что "да", - это единица, а все, что "нет", - это нуль.

Над значениями оценок в номинальных шкалах можно производить любые взаимно-однозначные преобразования и при этом смысл высказываний, задаваемых выражением (1.1), сохраняется.

Если целью измерения является упорядочение объектов одного класса в соответствии с интенсивностью проявления у них какого-то одного общего свойства, то наиболее выразительной и экономной будет ранговая , или порядковая шкала. Например, если общим для стратегий осуществления экспансии на рынке будет признак "объем продаж", то имеющиеся у ЛПР альтернативы осуществления экспансии можно, например, регламентировать в порядковой шкале со значениями "высокий", "средний", "низкий". Здесь также можно присвоить градациям шкалы числовые значения - ранги. Шкала в таком случае называется ранговой . Например, если первому в упорядоченном ряду объекту присвоить ранг, равный 1, второму - равный 2, и т. д., то получим так называемую прямую ранговую шкалу . Возможно ранжирование и в обратных ранговых шкалах , где более предпочтительному объекту присваивается больший, а не меньший ранг. Оценки в ранговых шкалах допускают любые монотонно возрастающие или монотонно убывающие преобразования.

Номинальные и ранговые шкалы относят к классу так называемых качественных шкал , то есть шкал, позволяющих выносить не более чем вербальные (на неформальном, качественном уровне) оценки и суждения.

Однако в практике чрезвычайно часто встречаются случаи, когда простого, качественного суждения об упорядочении альтернатив недостаточно. Например, ЛПР для принятия решений нужно не просто узнать, что одна из альтернатив осуществления экспансии на рынке обеспечивает объем продаж выше, чем другая. Ему еще нужно получить представление о том, насколько или во сколько раз достигаемый для альтернатив уровень продаж выше (или ниже). В подобных ситуациях для измерения значений критериев применяют наиболее совершенный класс шкал - количественные шкалы .

Подклассами количественных шкал выступают интервальная шкала , шкала отношений и абсолютная шкала - самая совершенная из всех шкал. Абсолютная шкала допускает только тождественные преобразования над ее значениями. Промежуточное положение (в смысле совершенства) между качественными и количественными шкалами занимает числовая , балльная шкала. В этой шкале оценки критериев выражаются в виде чисел, баллов, начисляемых по уcтановленным ЛПР правилам.

Что касается свойств балльных шкал, то чем меньше у них градаций (например, 3-5 числовых градаций) и чем проще правила начисления баллов, тем ближе такие шкалы к качественным, ранговым. И наоборот, чем число градаций больше и чем сложнее правила начисления баллов, тем балльная шкала ближе по своим свойствам и возможностям к количественной, интервальной.

Итак, чтобы воспользоваться формальной моделью (1.2) для выбора наилучшей альтернативы, следует решить задачу измерения .

В самом начале ЛПР проводит углубленный анализ цели, проникается пониманием полезности достигаемых результатов для решения проблемы. Именно здесь, на этом шаге ЛПР работает по технологии "номинаций" в простейшей, качественной шкале. Используя вербальное описание цели операции, ЛПР тщательно моделирует цель, формально воспроизводя ее в общем случае в виде вектора требуемого результата. Затем, действуя по принципу "вот эти частные критерии отнести к оценкам затрат, а те - к оценкам эффекта, формирует в общем случае векторный критерий W. Далее проводится содержательный анализ состава и генезиса (происхождения) факторов, задающих тип механизма ситуации.

Исходя из представления о цели и механизме ситуации, ЛПР формирует концептуальное множество альтернатив , принципиально приводящих к достижению цели операции. После этого концептуальное множество альтернатив ЛПР содержательно анализируется с целью выделения из него физически реализуемых альтернатив . Это значит, что каждую из альтернатив концептуального множества ЛПР проверяет на ее приемлемость как в отношении достижения цели операции, так и в отношении удовлетворения ограничений по времени на подготовку и реализацию этой альтернативы в ходе операции и требуемых ресурсов, необходимых для физической реализации альтернативы.

Когда концептуальные оценки затрат и эффекта (то есть оценки в номинальной шкале) получены, можно уже формально отсеять менее предпочтительные из концептуальных альтернатив. Менее предпочтительными при этом следует считать те из физически реализуемых концептуальных альтернатив, которые одновременно уступают хотя бы одной из других одновременно по оценкам эффекта и затрат.

В процессе подобного "номинирования" получают физически реализуемое допустимое множество альтернатив , состоящее из "нехудших" компонентов.

Далее для каждой альтернативы из множества физически реализуемых альтернатив следует произвести измерение значений всех частных компонентов векторного критерия в более совершенной шкале - ранговой или балльной, получить оценки и сделать выводы о "тенденциях", проявляющихся в изменении значений оценок критериев при изменениях значений управляемых факторов, имеющихся в описании альтернатив.

Изученные на основе измерения тенденции будут служить главными ориентирами при проверке адекватности более тонких моделей, позволят на количественном уровне произвести сравнения оценок альтернатив.

На третьем шаге процесса измерения строят модели для измерения оценок критериев в более совершенных, количественных шкалах типа интервальных или шкал отношений. Таким образом, более точно устанавливают не только тенденции, но и пропорции в значениях оценок. На этом же шаге измерения формируют функцию полезности для ЛПР оценок критериев, также, как правило, в шкале интервалов.

Схема процесса принятия решений

Главное предназначение ЛПР и конечный продукт его управленческой деятельности - это выработка решений. Разумеется, немаловажны и другие его управленческие функции, такие, как организация взаимодействия, всестороннего обеспечения проведения операции, контроль, оказание помощи, оценка фактической эффективности операции, фиксация, обобщение и распространение накопленного в ходе операции опыта.

Схема структуры принятия управленческих решений представлена на Рис. 1.7.

Рис. 1.7. Схема процесса принятия решения.

Основу принятия всех решений на всех этапах процесса выработки решений, конечно же, составляют предпочтения ЛПР.

Несомненно, целесообразным началом процесса принятия решений должна стать формализация предпочтений .

После того как предпочтения ЛПР формализованы и получена необходимая информация о предпочтениях, переходят к следующему важному шагу принятия решений - к построению функции выбора.

Функция выбора в теории принятия решений имеет фундаментальное значение. Именно на ее построение в конечном итоге ориентированы решение задач формирования исходного множества альтернатив, анализ условий проведения операции, выявление и измерение предпочтений ЛПР.

Согласно формальному определению, принятому в ТПР, функция выбора - это отображение вида

, (1.3)

где - некоторое множество(исходное для рассматриваемого шага принятия решений), изкоторого производят выбор; - подмножество, обладающее определенными (известными или заданными) свойствами, причем .

При поэтапном получении от ЛПР информации о его предпочтениях в ходе проведения измерений вначале строится функция выбора по результатам измерения и оценки в наиболее надежной, но и менее точной номинальной шкале на основе качественных суждений о предпочтениях. В результате из исходного множества А альтернатив получают первое представление искомого подмножества альтернатив , в котором содержится наилучшая альтернатива .

Если ЛПР, проведя неформальный анализ подмножества , еще не смогло определиться в выборе , то следует продолжить построение функции выбора. Для этого ЛПР должно уточнить измеренные предпочтения, применив для их измерения более совершенную, например порядковую или балльную , шкалу.

В результате уточнения вида функции выбора будет получено в общем случае иное подмножество альтернатив, причем . Теперь ЛПР должно сосредоточиться на анализе этого последнего множества , так как опять-таки наилучшая альтернатива содержится именно в нем. Затем при необходимости можно вновь уточнить предпочтения ЛПР, измерив их в какой-либо из пропорциональных шкал, и так далее до тех пор, пока ЛПР уверенно не остановится в выборе наилучшей альтернативы .

Следует иметь в виду, что конкретный вид функции выбора, реализующий отображение (1.3), зависит от того, каков механизм ситуации.

Это обстоятельство отмечено на схеме Рис. 1.7. вариантами построения функции выбора с детализацией их по типу условий неопределенности: в условиях стохастической неопределенности , в условиях поведенческой неопределенности и в условиях природной неопределенности .

Целевое различие в использовании скалярного и векторного критериев определило необходимость отображения на Рис. 1.7 в общем случае двух вариантов формы исходных данных и процедур для построения функции выбора - по скалярному или векторному критерию.

Получение информации

Процесс принятия решения требует по возможности полного объема информации как о самой управляющей системе, так и о среде ее функционирования (окружающей среде). Без информации такого рода невозможны анализ условий принятия решений, выявление механизма ситуации и формирование исходного множества альтернатив . ЛПР должен быть проведен содержательный анализ информации об условиях осуществления операции, получены надежные представления о механизме ситуации. Только обретя эту информацию, ЛПР сможет с позиций системного подхода не только вербально описать основные (ведущие) факторы, способствующие и мешающие формированию успешного исхода операции, но и формально оценить степень их влияния на результативность исхода.

Для этого необходимо точно понять, какая информация, какого качества и к какому сроку нужна. Результат этого промежуточного решения (содержание, требуемые точность и надежность информации, оперативность ее получения) поможет ЛПР осознанно выбрать один из доступных источников информации и принять решение. Схема классификации возможных источников и способов получения информации приведена на Рис. 1.8.

Рис. 1.8. Концептуальная схема классификации возможных источников и способов получения информации.

Из анализа схемы на Рис. 1.8. следует, что принципиально существует лишь три источника информации:

· эмпирические данные;

· знания, личный опыт и интуиция ЛПР;

· совет специалиста (экспертиза).

Ясно, что практически чаще всего люди черпают информацию из собственного опыта и знаний, а собственная интуиция помогает им заполнить пробелы в позитивном знании.

Кроме этого имеются еще две принципиальные возможности: поискать необходимые сведения в одном из "объективных источников", где зафиксирован исторический опыт человечества (эмпирические данные), или обратиться к "субъективному источнику" - к знаниям, умениям и навыкам признанных специалистов своего дела (экспертам).

В ТПР считают, что эксперт - это человек, который лично работает в рассматриваемой области деятельности, является признанным специалистом по решаемой проблеме, может и имеет возможность высказать суждение по ней в доступной для ЛПР форме.

Эксперты выполняют информационную и аналитическую работу на основе своих личных представлений о решаемой задаче. В общем случае представления экспертов могут не совпадать с мнением ЛПР. Такое расхождение во мнениях играет как отрицательную, так и положительную роль. С одной стороны, при несовпадении мнений затягивается процесс выработки решения, но, с другой - ЛПР может критически осмыслить альтернативную точку зрения или скорректировать собственные предпочтения.

Чтобы повысить личную уверенность в том, что специалист дал ему правильный совет, ЛПР может обратиться не к одному, а к нескольким экспертам. Соответственно, различают индивидуальную (один эксперт) и групповую экспертизу. Если вопрос строго конфиденциальный, время лимитировано или нет возможности спросить у нескольких специалистов ответа на интересующий вопрос, то индивидуальная экспертиза - наилучший способ получения информации. Но если перечисленные ограничения не являются существенными, то, несомненно, групповая экспертиза - в целом более достоверный и точный способ получения информации.

В то же время в ходе групповой экспертизы возможно несовпадение субъективных суждений отдельных специалистов. В связи с этим требуется предпринимать специальные приемы обработки экспертной информации с целью повышения надежности результатов.

ТПР разработан специальный комплекс организационных, технических и математических процедур, придающих стройность и логическую обусловленность всему процессу получения, обработки и анализа групповой экспертной информации. Этот комплекс процедур, включающий экспертизу (то есть сам опрос экспертов) лишь как один из этапов получения информации, в ТПР получил название метода экспертного оценивания .

Исторически накапливая знания, научившись письменности, люди стали фиксировать свой объективный опыт. Всю полезную информацию стали заносить в той или иной форме на специальные носители. Вначале эти носители были несовершенны (например, рукописи, книги) и малодоступны, однако постепенно они приобрели более совершенную форму, а с развитием печатного дела превратились в библиотеки, в банки данных (БнД), базы данных (БзД) и базы знаний (БзЗ). Процесс поиска общедоступной информации стал более удобным, эффективным и даже творческим. Но в это же время какая-то информация и какие-то источники информации становились недоступными широкой общественности. Поэтому в том случае, когда ЛПР в силу разных причин не может найти необходимую ему информацию в общедоступных источниках, ее приходится активно добывать. Чтобы добыть недоступную информацию, ЛПР может организовать и провести натурный или модельный эксперимент , может прибегнуть к помощи разведки или применить какие-то спецсредства.

Разведка или спецсредства требуют значительных затрат; то же относится и к эксперименту, особенно, если эксперимент масштабный и проводится в условиях действия неоднозначного механизма ситуации. Поэтому, чтобы сэкономить средства, целесообразно провести строго научное планирование эксперимента , количественно установить его параметры, оптимальные в отношении эффективности будущих решений и действий ЛПР.

Значительные теоретические успехи достигнуты в деле планирования экспериментов на математических моделях с применением компьютеров. Аппарат математической теории планирования в основном ориентирован на исследование случайных механизмов ситуации. В то же время он нередко бывает полезным и в других ситуациях.

Рассмотрим постановку задачи планирования эксперимента.

Если целью исследования является максимизация полезного эффекта эксперимента при ограничениях на затраты, а сам полезный эффект соотносится в сознании ЛПР с обеспечением экстремума (например, максимума) выходного результата, то задача установления оптимальных параметров эксперимента сведется к стремлению максимизировать выходной результат при ограничениях на затраты. Например, если нужно увеличить выход некоторого полезного вещества в процессе химического производства, а объем выхода зависит от таких важных параметров, как температура, давление и т.п., то постановка задачи планирования эксперимента по выпуску химического продукта может выглядеть следующим образом: найти оптимальное сочетание перечисленных управляемых переменных процесса химического производства, которые обеспечивают максимальный выход готового продукта требуемого качества, при условии, что затраты на проведение эксперимента не выше отпущенных на него финансов.

Примерно по такой же схеме формулируется постановка задачи на получение информации и в том случае, когда эффект отождествляется с точностью предсказания выходного результата, то есть с величиной ошибки воспроизведения механизма ситуации, а также постановка задачи, в которой целью ЛПР является стремление к минимизации затрат на моделирование при обеспечении уровней притязаний ЛПР на ожидаемый эффект.

Математические методы и модели в принятии решений

Введение!

Цель моделирования - процесс исследования объекта на разных уровнях - от качественного до точного количественного, по мере осуществления сбора информации и развития модели.

В математической области методы и модели понимаются как комплексные категории, которые в себя включают:

    методы в принятии решений;

    методы исследования операций;

    экономико-математический методы;

    методы экономической кибернетики;

    методы оптимального управления;

    прикладную математику в экономике;

    прикладную математику в организации производства.

Этот список не является полным, что свидетельствует о широком диапазоне математических методов и моделей. В различных источниках, содержание которых касается представленной тематики, математические модели и методы рассматриваются в тех или иных сочетаниях.

Практическое доказательство обозначенной мысли возможно на примере известного метода «теории вероятностей», который представлен в рамках математических моделей широким классом и включает в себя такие понятия, как «вероятность», «случайное событие», «случайная величина», «математическое ожидание (среднее значение) случайной величины», «дисперсия (рассеяние)» и т.п. В конце XIX - начале XX вв. выделяется новый объект, который представляет собой коммутированную систему телефоной связи, подразумевающую такие понятия, как «заявка на соединение», «отказ», «время ожидания соединения», «коммутация» и тому подобные элеметы.

Математическая теоретико-вероятностная модель процессов в коммутированных телефонных сетях была образована в 20-х гг. в результате соединения представленного метода и объекта. Автором подобной операции стал А.К. Эрланг. В качестве примера существующих понятий данной модели можно отметить:

    «поток заявок»;

    «среднее время ожидания»;

    «средняя длина очереди на обслуживание»;

    «дисперсию времени ожидания»;

    «вероятность отказа».

Последующее развитие этого научного направления продемонстрировало результативность понятийных категорий симбиозной модели, выявило ее масштабную конструктивную функцию.

Данная модель в процессе своего развития трансформировалась в метод исследования сложных систем. В качестве примера можно выделить «теорию массового обслуживания», категориальный аппарат которой перестал восприниматься как неотъемлемая составляющая телефонных сетей. Терминология и понятийная база приобрели общетеоретический характер. Так, организация новых моделей может осуществляться посредством применения теории массового обслуживания к таким объектам, как производственные процессы, операционные системы, ЭВМ, транспортные потоки и т.п.

В результате очевидным представляется вывод, что метод является в полной мере сформированным в случае развития однородной совокупности моделей. Степень исследования объекта же напрямую зависит от количества разработанных моделей объекта. Двойственная сущность модели формирует, в свою очередь, дуализм категориального аппарата моделирования, который интегрирует в себя понятия общие или специфичные, образованные от «метода» и «объекта», соответственно.

Иными словами, методы, модели, объекты организуют непрерывную последовательность, которая подразумевает наличие различных групп моделей, образующихся в соответствии со спецификой своего происхождения и применяемости. Среди таких групп можно выделить:

    модели, которые предполагают взаимодействие раннее разработанных методов и новых объектов;

    модели, впервые созданные с целью осуществления описания конкретного объекта, при этом новые модели могут быть применимы и по отношению к другим объектам.

Линейное программирование - математическая дисциплина, посвящённая теории и методам решения экстремальных задач на множествах n -мерного векторного пространства, задаваемых системами линейных уравнений и неравенств.

Целочисленное программирование - разновидность линейного программирования, подразумевающая, что искомые значения должны быть целыми числами.

Раздел математического программирования, в котором изучаются методы нахождения экстремумов функций в пространстве параметров, где все или некоторые переменные являются целыми числами.

Простейший метод решения задачи целочисленного программирования - сведение ее к задаче линейного программирования с проверкой результата на целочисленность.

Потоки в сетях

Деятельность современного общества тесно связана с разного рода сетями - возьмите, к примеру, транспорт, коммуникации, распределение товаров и тому подобное. Поэтому математический анализ таких сетей стал предметом фундаментальной важности.

ГЕОМЕТРИЧЕСКОЕ ПРОГРАММИРОВАНИЕ - раздел , изучает определенный класс оптимизационных задач , встречающихся главным образом в инженерно-экономических расчетах. Основное требование метода состоит в том, чтобы все технические характеристики проектируемых объектов были выражены количественно в виде зависимостей от регулируемых параметров . Геометрическим такой вид программирования назван потому, что в нем эффективно используется геометрическое среднее и ряд таких геометрических понятий, как векторные пространства , векторы , ортогональность и др.

НЕЛИНЕЙНОЕ ПРОГРАММИРОВАНИЕ - раздел математического программирования , изучающий методы решения экстремальных задач с нелинейной целевой функцией и (или) областью допустимых решений , определенной нелинейными ограничениями .

ОПТИМАЛЬНОЕ УПРАВЛЕНИЕ - 1. Основное понятие математической теории оптимальных процессов (принадлежащей разделу математики под тем же названием - О. у.); означает выбор таких управляющих параметров , которые обеспечивали бы наилучшее с точки зрения заданного критерия протекание процесса или, иначе, наилучшее поведение системы , ее развитие к цели по оптимальной траектории . Эти управляющие параметры обычно рассматриваются как функции времени , что означает возможность их изменения по ходу процесса для выбора на каждом этапе их наилучших (оптимальных) значений.

ТЕОРИЯ МАССОВОГО ОБСЛУЖИВАНИЯ - раздел исследования операций , который рассматривает разнообразные процессы в экономике, а также в телефонной связи, здравоохранении и других областях, как процессы обслуживания, т. е. удовлетворения каких-то запросов, заказов (напр., обслуживание кораблей в порту - их разгрузка и погрузка, обслуживание токарей в инструментальной кладовой цеха - выдача им резцов, обслуживание клиентов в прачечной - стирка белья и т. д.).

ТЕОРИЯ ПОЛЕЗНОСТИ - теоретическое направление в экономической науке, развитое представителями австрийской школы в XIX-XX вв., основанное на базисном объективном понятии "полезность", воспринимаемом как удовольствие, удовлетворение, получаемое человеком в результате потребления благ. Основной принцип теории полезности - закон убывающей предельной полезности , согласно которому приращение полезности, получаемое от одной добавленной единицы блага, непрерывно убывает.

Теория принятия решений - междисциплинарная область исследования, представляющая интерес для практиков и связанная с математикой, статистикой, экономикой, философией, менеджментом и психологией; изучает, как реальные лица, принимающие решение, выбирают решения и насколько оптимальные решения могут быть приняты.

Теория игр - математический метод изучения оптимальных стратегий в играх. Под игрой понимается процесс, в котором участвуют две и более сторон, ведущих борьбу за реализацию своих интересов. Каждая из сторон имеет свою цель и использует некоторую стратегию, которая может вести к выигрышу или проигрышу - в зависимости от поведения других игроков. Теория игр помогает выбрать лучшие стратегии с учётом представлений о других участниках, их ресурсах и их возможных поступках.

Имитационное моделирование - метод, позволяющий строить модели, описывающие процессы так, как они проходили бы в действительности. Такую модель можно «проиграть» во времени как для одного испытания, так и заданного их множества. При этом результаты будут определяться случайным характером процессов. По этим данным можно получить достаточно устойчивую статистику.

Динамическое программирование – это раздел математики, посвящённый теории и методам решения многошаговых задач оптимального управления.