Из истории развития электроэнергетики ссср. Тепловая электростанция. История изобретения и производства

Тепловая электростанция (тепловая электрическая станция) - электростанция, вырабатывающая электрическую энергию за счет преобразования химической энергии топлива в механическую энергию вращения вала электрогенератора.

На тепловых электростанциях производится преобразование тепловой энергии, выделяющейся при сжигании органического топлива (уголь, торф, сланцы, нефть, газы), в механическую, а затем в электрическую. Здесь химическая энергия, заключенная в топливе, проходит сложный путь преобразований из одной формы в другую для получения электрической энергии.

Преобразование энергии, заключающейся в топливе, на тепловой электростанции представляется возможным разделить на следующие основные стадии: преобразование химической энергии в тепловую, тепловой – в механическую и механической – в электрическую.

Первые тепловые электростанции (ТЭС) появились в конце XIX в. В 1882 г. ТЭС была построена в НьюЙорке, в 1883 г. – в Петербурге, в 1884 г. – в Берлине.

Среди ТЭС большую часть составляют тепловые паротурбинные электростанции. На них тепловая энергия используется в котельном агрегате (парогенераторе).


Компоновка тепловой электростанции: 1 – электрический генератор; 2 – паровая турбина; 3 – пульт управления; 4 – деаэратор; 5 и 6 – бункеры; 7 – сепаратор; 8 – циклон; 9 – котел; 10 – поверхность нагрева (теплообменник); 11 – дымовая труба; 12 – дробильное помещение; 13 – склад резервного топлива; 14 – вагон; 15 – разгрузочное устройство; 16 – конвейер; 17 – дымосос; 18 – канал; 19 – золоуловитель; 20 – вентилятор; 21 – топка; 22 – мельница; 23 – насосная станция; 24 – источник воды; 25 – циркуляционный насос; 26 – регенеративный подогреватель высокого давления; 27 – питательный насос; 28 – конденсатор; 29 – установка химической очистки воды; 30 – повышающий трансформатор; 31 – регенеративный подогреватель низкого давления; 32 – конденсатный насос

Одним из важнейших элементов котельного агрегата является топка. В ней химическая энергия топлива в ходе химической реакции горючих элементов топлива с кислородом воздуха превращается в тепловую энергию. При этом образуются газообразные продукты сгорания, которые и воспринимают большую часть тепла, выделившегося при сгорании топлива.

В процессе нагрева топлива в топке образуется кокс и газообразные, летучие вещества. При температуре 600–750 °C летучие вещества воспламеняются и начинают гореть, что приводит к повышению температуры в топке. При этом начинается и горение кокса. В результате образуются дымовые газы, выходящие из топки при температуре 1000–1200 °C. Эти газы используют для нагрева воды и получения пара.

В начале XIX в. для получения пара применяли простые агрегаты, в которых подогрев и испарение воды не разграничивались. Типичным представителем простейшего типа паровых котлов являлся цилиндрический котел.

Для развивающейся электроэнергетики требовались котлы, вырабатывающие пар высокой температуры и высокого давления, поскольку именно при таком состоянии он дает наибольшее количество энергии. Такие котлы были созданы, и их назвали водотрубными котлами.

В водотрубных котлах топочные газы обтекают трубы, по которым циркулирует вода, тепло от топочных газов передается через стенки труб воде, которая превращается в пар.


Состав основного оборудования тепловой электрической станции и взаимосвязь ее систем: топливное хозяйство; подготовка топлива; котел; промежуточный пароперегреватель; часть высокого давления паровой турбины (ЧВД или ЦВД); часть низкого давления паровой турбины (ЧНД или ЦНД); электрический генератор; трансформатор собственных нужд; трансформатор связи; главное распределительное устройство; конденсатор; конденсатный насос; циркуляционный насос; источник водоснабжения (например, река); подогреватель низкого давления (ПНД); водоподготовительная установка (ВПУ); потребитель тепловой энергии; насос обратного конденсата; деаэратор; питательный насос; подогреватель высокого давления (ПВД); шлакозолоудаление; золоотвал; дымосос (ДС); дымовая труба; дутьевой вентилятов (ДВ); золоуловитель

Современный паровой котел работает следующим образом.

Топливо сгорает в топке, у стен которой расположены вертикальные трубы. Под действием тепла, выделившегося при сжигании топлива, вода, находящаяся в этих трубах, кипит. Образующийся при этом пар поднимается в барабан котла. Котел представляет собой толстостенный горизонтальный стальной цилиндр, заполняемый водой до половины. Пар собирается в верхней части барабана и выходит из него в группу змеевиков – пароперегреватель. В пароперегревателе пар дополнительно нагревается выходящими из топки дымовыми газами. Он имеет температуру более высокую, чем та, при которой вода кипит при данном давлении. Такой пар называется перегретым. После выхода из пароперегревателя пар поступает к потребителю. В газоходах котла, расположенных после пароперегревателя, дымовые газы проходят через другую группу змеевиков – водяной экономайзер. В нем вода перед поступлением в барабан котла подогревается теплом дымовых газов. За экономайзером по ходу дымовых газов обычно размещаются трубы воздухоподогревателя. В нем воздух подогревают перед подачей в топку. После воздухоподогревателя дымовые газы при температуре 120–160 °C выходят в дымовую трубу.

Все рабочие процессы котлового агрегата полностью механизированы и автоматизированы. Он обслуживается многочисленными вспомогательными механизмами, приводимыми в движение электродвигателями, мощность которых может достигать нескольких тысяч киловатт.

Котельные агрегаты мощных электростанций вырабатывают пар высокого давления – 140–250 атмосфер и высокой температуры – 550–580 °C. В топках этих котлов преимущественно сжигают твердое топливо, измельченное до пылевидного состояния, мазут или природный газ.

Превращение угля в пылевидное состояние производится в пылеприготовительных установках.

Принцип работы такой установки с шаровой барабанной мельницей заключается в следующем.

Топливо поступает в котельную по ленточным транспортерам и сбрасывается в бункер, из которого после автоматических весов питателем подается в углеразмольную мельницу. Размол топлива происходит внутри горизонтального барабана, вращающегося со скоростью около 20 об/мин. В нем находятся стальные шары. По трубопроводу в мельницу подается горячий воздух, нагретый до температуры 300–400 °C. Отдавая часть своего тепла на подсушку топлива, воздух охлаждается до температуры порядка 130 °C и, выходя из барабана, выносит образующуюся в мельнице угольную пыль в пылеразделитель (сепаратор). Освобожденная от крупных частиц пылевоздушная смесь выходит из сепаратора сверху и направляется в пылеотделитель (циклон). В циклоне угольная пыль отделяется от воздуха, и через клапан поступает в бункер угольной пыли. В сепараторе крупные частицы пыли выпадают и возвращаются в мельницу для дальнейшего размола. Смесь угольной пыли и воздуха подается в горелки котла.

Пылеугольные горелки представляют собой устройства для подачи в топочную камеру пылевидного топлива и необходимого для его горения воздуха. Они должны обеспечить полное сгорание топлива путем создания однородной смеси воздуха и топлива.

Топка современных пылеугольных котлов представляет собой высокую камеру, стены которой покрыты трубами, так называемыми пароводяными экранами. Они защищают стены топочной камеры от налипания на них шлака, образующегося при сжигании топлива, а также защищают обмуровку от быстрого износа вследствие химического воздействия шлака и высокой температуры, развивающейся при горении топлива в топке.

Экраны воспринимают в 10 раз больше тепла на каждый квадратный метр поверхности, чем остальные трубчатые поверхности нагрева котла, воспринимающие тепло топочных газов главным образом за счет непосредственного соприкосновения с ними. В топочной камере угольная пыль воспламеняется и сгорает в несущем ее газовом потоке.

Топки котлов, в которых сжигается газообразное или жидкое топливо, также представляют собой камеры, покрытые экранами. Смесь топлива и воздуха подается в них через газовые горелки или мазутные форсунки.

Устройство современного барабанного котельного агрегата большой производительности, работающего на угольной пыли, состоит в следующем.

Топливо в виде пыли вдувается в топку через горелки вместе с частью необходимого для горения воздуха. Остальной воздух подается в топку предварительно подогретым до температуры 300–400 °C. В топке частицы угля сгорают на лету, образуя факел, с температурой 1500–1600 °C. Негорючие примеси угля превращаются в золу, большая часть которой (80–90 %) выносится из топки дымовыми газами, образовавшимися в результате сжигания топлива. Остальная зола, состоящая из слипшихся частиц шлака, скопившегося на трубах топочных экранов и затем оторвавшегося от них, падает на дно топки. После этого она собирается в специальной шахте, расположенной под топкой. Струей холодной воды шлак охлаждается в ней, а затем выносится водой за пределы котельного агрегата специальными устройствами системы гидрозолоудаления.

Стены топки покрыты экраном – трубами, в которых циркулирует вода. Под действием тепла, излучаемого горящим факелом, она частично превращается в пар. Эти трубы присоединены к барабану котла, в который также подается подогретая в экономайзере вода.

По мере движения дымовых газов, часть их тепла излучается на трубки экрана и температура газов постепенно понижается. У выхода из топки она составляет 1000–1200 °C. При дальнейшем движении дымовые газы на выходе из топки соприкасаются с трубками экранов, охлаждаясь до температуры 900–950 °C. В газоходе котла размещены трубки змеевиков, по которым проходит пар, образовавшийся в экранных трубах и отделившийся от воды в барабане котла. В змеевиках пар получает дополнительное тепло от дымовых газов и перегревается, т. е. его температура становится более высокой, чем температура воды, кипящей при том же давлении. Эта часть котла называется пароперегревателем.

Пройдя между трубами пароперегревателя, дымовые газы с температурой 500–600 °C попадают в ту часть котла, в которой размещены трубки водоподогревателя, или водяного экономайзера. В него насосом подается питательная вода с температурой 210–240 °C. Такая высокая температура воды достигается в особых подогревателях, являющихся частью турбинной установки. В водяном экономайзере вода нагревается до температуры кипения и поступает в барабан котла. Дымовые газы, проходящие между трубами водяного экономайзера, продолжают охлаждаться и затем проходят внутри труб воздухоподогревателя, в котором производится подогрев воздуха за счет тепла, отдаваемого газами, температура которых при этом снижается до 120–160 °C.

Воздух, необходимый для сжигания топлива, подается в воздухоподогреватель дутьевым вентилятором и там нагревается до 300–400 °C, после чего поступает в топку для сжигания топлива. Вышедшие из воздухоподогревателя дымовые, или уходящие, газы проходят через специальное устройство – золоуловитель – для очистки от золы. Очищенные уходящие газы дымососом выбрасываются в атмосферу через дымовую трубу высотой до 200 м.

Существенное значение в котлах этого типа имеет барабан. По многочисленным трубам к нему поступает пароводяная смесь из топочных экранов. В барабане пар отделяется из этой смеси, а оставшаяся вода смешивается с питательной водой, поступающей в этот барабан из экономайзера. Из барабана вода по трубам, расположенным снаружи топки, проходит в сборные коллекторы, а из них – в экранные трубы, расположенные в топке. Таким способом замыкается круговой путь (циркуляция) воды в барабанных котлах. Движение воды и пароводяной смеси по схеме барабан – наружные трубы – экранные трубы – барабан совершается за счет того, что общий вес столба пароводяной смеси, заполняющей экранные трубы, меньше веса столба воды в наружных трубах. Это создает напор естественной циркуляции, обеспечивающий круговое движение воды.

Паровые котлы автоматически управляются многочисленными регуляторами, за работой которых наблюдает оператор.

Приборы регулируют подачу в котел топлива, воды и воздуха, поддерживают постоянными уровень воды в барабане котла, температуру перегретого пара и др. Приборы, контролирующие работу котельного агрегата и всех его вспомогательных механизмов, сосредоточены на специальном щите управления. На нем также находятся приборы, позволяющие дистанционно производить с этого щита автоматизированные операции: открытие и закрытие всех запорных органов на трубопроводах, пуск и остановку отдельных вспомогательных механизмов, а также пуск и остановку всего котлоагрегата в целом.

Водотрубные котлы описанного типа имеют весьма существенный недостаток: наличие громоздкого тяжелого и дорогого барабана. Чтобы избавиться от него, были созданы паровые котлы без барабанов. Они состоят из системы изогнутых трубок, в один конец которых подается питательная вода, а из другого выходит перегретый пар требуемых давления и температуры, т. е. вода до превращения ее в пар проходит через все поверхности нагрева один раз без циркуляции. Такие паровые котлы названы прямоточными.

Схема работы такого котла следующая.

Питательная вода проходит через экономайзер, затем попадает в нижнюю часть змеевиков, расположенных винтообразно на стенах топки. Образовавшаяся в этих змеевиках пароводяная смесь поступает в змеевик, расположенный в газоходе котла, где заканчивается превращение воды в пар. Эта часть прямоточного котла называется переходной зоной. Затем пар поступает в пароперегреватель. После выхода из пароперегревателя пар направляется к потребителю. Воздух, необходимый для горения, подогревается в воздухоподогревателе.

Прямоточные котлы позволяют получить пар давлением более 200 атмосфер, что в барабанных котлах невозможно.

Полученный перегретый пар, имеющий высокое давление (100–140 атмосфер) и высокую температуру (500–580 °C) способен расширяться и совершать работу. По магистральным паропроводам этот пар передается в машинный зал, в котором установлены паровые турбины.

В паровых турбинах происходит преобразование потенциальной энергии пара в механическую энергию вращения ротора паровой турбины. В свою очередь, ротор соединен с ротором электрического генератора.

Принцип работы и устройство паровой турбины рассмотрены в статье "Электрическая турбина", поэтому останавливаться на них подробно мы не будем.

Паровая турбина будет тем более экономичной, т. е. тем меньше будет расходовать тепла на каждый выработанный ею киловатт-час, чем ниже будет давление пара, выходящего из турбины.

С этой целью пар, выходящий из турбины, направляют не в атмосферу, а в особое устройство, называемое конденсатором, в котором поддерживают очень низкое давление, всего 0,03–0,04 атмосферы. Достигается это понижением температуры пара при помощи охлаждения его водой. Температура пара при таком давлении составляет 24–29 °C. В конденсаторе пар отдает свое тепло охлаждающей воде и при этом происходит его конденсация, т. е. превращение в воду – конденсат. Температура пара в конденсаторе зависит от температуры охлаждающей воды и количества этой воды, расходуемой на каждый килограмм конденсируемого пара. Вода, служащая для конденсации пара, поступает в конденсатор при температуре 10–15 °C, а выходит из него при температуре около 20–25 °C. Расход охлаждающей воды достигает 50–100 кг на 1 кг пара.

Конденсатор представляет собой цилиндрический барабан с двумя крышками по торцам. В обоих концах барабана установлены металлические доски, в которых закреплено большое число латунных трубок. По этим трубкам проходит охлаждающая вода. Между трубками, обтекая их сверху вниз, проходит пар из турбины. Образующийся при конденсации пара конденсат удаляется снизу.

При конденсации пара большое значение имеет передача тепла от пара к стенке трубок, по которым проходит охлаждающая вода. Если в паре имеется даже незначительное количество воздуха, то передача тепла от пара к стенке трубки резко ухудшается; от этого будет зависеть и величина давления, которое надо будет поддерживать в конденсаторе. Воздух, неизбежно проникающий в конденсатор с паром и через неплотности, необходимо непрерывно удалять. Это осуществляется специальным аппаратом – пароструйным эжектором.

Для охлаждения в конденсаторе пара, отработавшего в турбине, используют воду из реки, озера, пруда или моря. Расход охлаждающей воды на мощных электростанциях очень велик и составляет, например для электростанции мощностью 1 млн квт, около 40 м3/сек. Если воду для охлаждения пара в конденсаторах забирают из реки, а затем, нагретую в конденсаторе, возвращают в реку, то такую систему водоснабжения называют прямоточной.

Если воды в реке недостаточно, то сооружают плотину и образуют пруд, из одного конца которого забирают воду для охлаждения конденсатора, а в другой конец сбрасывают нагретую воду. Иногда для охлаждения воды, нагревшейся в конденсаторе, применяют искусственные охладители – градирни, представляющие собой башни высотой порядка 50 м.

Нагретая в конденсаторах турбины вода подается на лотки, расположенные в этой башне на высоте 6–9 м. Вытекая струями через отверстия лотков и разбрызгиваясь в виде капель или тонкой пленки, вода стекает вниз, при этом частично испаряясь и охлаждаясь. Охлажденная вода собирается в бассейне, откуда насосами подается в конденсаторы. Такая система водоснабжения называется замкнутой.

Мы рассмотрели основные устройства, служащие для превращения химической энергии топлива в электрическую энергию на паротурбинной тепловой электростанции.

Работа электростанции, сжигающей уголь, происходит следующим образом.

Уголь подается железнодорожными составами широкой колеи в разгрузочное устройство, где при помощи специальных разгрузочных механизмов – вагоноопрокидывателей – выгружается из вагонов на ленточные транспортеры.

Запас топлива в котельной создается в специальных емкостях-хранилищах – бункерах. Из бункеров уголь поступает в мельницу, где он подсушивается и размалывается до пылевидного состояния. Смесь угольной пыли и воздуха подается в топку котла. При сгорании угольной пыли образуются дымовые газы. После охлаждения газы проходят через золоуловитель и, очистившись в нем от летучей золы, выбрасываются в дымовую трубу.

Выпавшие из топочной камеры шлаки и летучая зола из золоуловителей по каналам транспортируются водой и затем насосами перекачиваются в золоотвал. Воздух для сжигания топлива подается вентилятором в воздухоподогреватель котла. Перегретый пар высокого давления и высокой температуры, полученный в котле, по паропроводам подается в паровую турбину, где он расширяется до очень низкого давления и уходит в конденсатор. Образовавшийся в конденсаторе конденсат забирается конденсатным насосом и подается через подогреватель в деаэратор. В деаэраторе происходит удаление из конденсата воздуха и газов. В деаэратор поступает также сырая вода, прошедшая через водоподготовительное устройство, для восполнения потери пара и конденсата. Из питательного бака деаэратора насосом питательная вода подается в водяной экономайзер парового котла. Вода для охлаждения отработавшего пара забирается из реки и циркуляционным насосом направляется в конденсатор турбины. Электрическая энергия, выработанная генератором, соединенным с турбиной, отводится через повышающие электрические трансформаторы по линиям электропередачи высокого напряжения к потребителю.

Мощность современных ТЭС может достигать 6000 мегаватт и более при КПД до 40 %.

На ТЭС могут также применяться газовые турбины, работающие на природном газе или жидком топливе. Газотурбинные электростанции (ГТЭС) применяются для покрытия пиков электрической нагрузки.

Существуют также парогазовые электростанции, в которых энергетическая установка состоит из паротурбинного и газотурбинного агрегатов. Их КПД доходит до 43 %.

Преимуществом ТЭС по сравнению с гидроэлектростанциями является то, что их можно построить в любом месте, приблизив их к потребителю. Они работают практически на всех видах органического топлива, поэтому их можно приспособить к тому виду, который имеется в наличии в данной местности.

В середине 70-х годов XX в. доля электроэнергии, вырабатываемой на ТЭС, составляла примерно 75 % от общей выработки. В СССР и США она была еще выше – 80 %.

Основным недостатком теплоэлектростанций является высокая степень загрязнения окружающей среды углекислым газом, а также большая площадь, которую занимают отвалы золы.

Читайте и пишите полезные

БАРИНОВ В. А., доктор техн. наук, ЭНИН им. Г. М. Кржижановского

В развитии электроэнергетики СССР можно выделить несколько этапов: соединение электростанций на параллельную работу и организация первых электроэнергетических систем (ЭЭС); развитие ЭЭС и образование территориальных объединенных электроэнергетических систем (ОЭС); создание единой электроэнергетической системы (ЕЭС) европейской части страны; формирование ЕЭС в масштабе всей страны (ЕЭС СССР) с включением ее в состав межгосударственного энергообъединения социалистических стран.
Перед первой мировой войной суммарная мощность электростанций дореволюционной России составляла 1141 тыс. кВт, а годовая выработка электроэнергии - 2039 млн. кВт-ч. Самая крупная тепловая электростанция (ТЭС) имела мощность 58 тыс. кВт, наибольшая мощность агрегата была 10 тыс. кВт. Суммарная мощность гидроэлектростанций (ГЭС) составляла 16 тыс. кВт, самой крупной была ГЭС мощностью 1350 кВт. Протяженность всех сетей напряжением выше генераторного оценивалась величиной около 1000 км.
Основы развития электроэнергетики СССР были заложены разработанным под руководством В. И. Ленина Государственным планом электрификации России (планом ГОЭЛРО), предусматривающим строительство крупных электростанций и электрических сетей и объединение электростанций в ЭЭС. План ГОЭЛРО был принят на VIII Всероссийском съезде Советов в декабре 1920 г.
Уже на начальном этапе реализации плана ГОЭЛРО была проведена значительная работа по восстановлению разрушенного войной энергетического хозяйства страны, строительству новых электростанций и электрических сетей. Первые ЭЭС - Московская и Петроградская - были созданы в 1921 г. В 1922 г. вошла в эксплуатацию первая линия напряжением 110 кВ в Московской ЭЭС, и сети 110 кВ получили в дальнейшем широкое развитие.
К конечному 15-летнему сроку план ГОЭЛРО был значительно перевыполнен. Установленная мощность электростанций страны в 1935 г. превысила 6,9 млн. кВт. Годовая выработка превзошла 26,2 млрд. кВт-ч. По производству электроэнергии Советский Союз занял второе место в Европе и третье в мире.
Интенсивное плановое развитие электроэнергетики было прервано началом Великой Отечественной войны. Перебазирование промышленности западных районов на Урал и в восточные районы страны потребовало форсированного развития энергетического хозяйства Урала, Северного Казахстана, Центральной Сибири, Средней Азии, а также Поволжья, Закавказья и Дальнего Востока. Исключительно большое развитие получила энергетика Урала; выработка электроэнергии электростанциями Урала с 1940 по 1945 гг. увеличилась в 2,5 раза и достигла 281% всей выработки по стране.
Восстановление разрушенного энергетического хозяйства началось уже с конца 1941 г.; в 1942 г. восстановительные работы велись в центральных районах европейской части СССР, в 1943 г. - в южных районах; в 1944 г. - в западных районах, а в 1945 г. эти работы распространялись на всю освобожденную территорию страны.
В 1946 г. суммарная мощность электростанций СССР достигла довоенного уровня.
Наибольшая мощность ТЭС в 1950 г. составила 400 МВт; турбина мощностью 100 МВт в конце 40-х годов стала типовым агрегатом, вводимым на ТЭС.
В 1953 г. на Черепетской ГРЭС были введены энергоблоки мощностью 150 МВт на давление пара 17 МПа. В 1954 г. вошла в эксплуатацию первая в мире атомная электростанция (АЭС) мощностью 5 МВт.
В составе вновь вводимых генерирующих мощностей возрастала мощность ГЭС. В 1949-1950 гг. были приняты решения о строительстве мощных Волжских ГЭС и сооружении первых дальних линий электропередачи (ВЛ). В 1954-1955 г. началось строительство наиболее крупных Братской и Красноярской ГЭС.
К 1955 г. значительное развитие получили три работавшие раздельно объединенные электроэнергетические системы европейской части страны; Центра, Урала и Юга; суммарная выработка этих ОЭС составила около половины всей производимой в стране электроэнергии.
Переход к следующему этапу развития энергетики был связан с вводом в эксплуатацию Волжских ГЭС и ВЛ 400-500 кВ. В 1956 г. была введена в работу первая ВЛ напряжением 400 кВ Куйбышев - Москва. Высокие технико-экономические показатели этой ВЛ были достигнуты за счет разработки и реализации ряда мероприятий по повышению ее устойчивости и пропускной способности: расщепления фазы на три провода, сооружения переключательных пунктов, ускорения действия выключателей и релейных защит, применения продольной емкостной компенсации реактивности линии и поперечной компенсации емкости линии с помощью шунтирующих реакторов, внедрения автоматических регуляторов возбуждения (АРВ) «сильного действия» генераторов отправной гидроэлектростанции и мощных синхронных компенсаторов приемных подстанций и др.
При вводе в работу ВЛ 400 кВ Куйбышев-Москва на параллельную работу с ОЭС Центра присоединилась Куйбышевская ЭЭС района Средней Волги; этим было положено начало объединению ЭЭС различных районов и созданию ЕЭС европейской части СССР.
С вводом в 1958-1959 гг. участков ВЛ Куйбышев-Урал произошло объединение ЭЭС Центра, Предуралья и Урала.
В 1959 г. вступила в эксплуатацию первая цепь ВЛ 500 кВ Волгоград-Москва, и в состав ОЭС Центра вошла Волгоградская ЭЭС; в 1960 г. произошло присоединение к ОЭС Центра ЭЭС центрально-черноземной области.
В 1957 г. было закончено строительство Волжской ГЭС имени В. И. Ленина с агрегатами 115 МВт, в 1960 г. - Волжской ГЭС им. XXII съезда КПСС. В 1950-1960 гг. завершены также Горьковская, Камская, Иркутская, Новосибирская, Кременчугская, Каховская и ряд других ГЭС. В конце 50-х годов были введены первые серийные энергоблоки на давление пара 13 МПа: мощностью 150 МВт на Приднепровской ГРЭС и 200 МВт на Змиевской ГРЭС.
Во второй половине 50-х годов было завершено объединение ЭЭС Закавказья; шел процесс объединения ЭЭС Северо-Запада, Средней Волги и Северного Кавказа. С 1960 г. началось формирование ОЭС Сибири и Средней Азии.
Велось широкое строительство электрических сетей. С конца 50-х годов началось внедрение напряжения 330 кВ; сети этого напряжения получили большое развитие в южной и северо-западной зонах европейской части СССР. В 1964 г. был завершен перевод дальних ВЛ 400 кВ на напряжение 500 кВ и создана единая сеть 500 кВ, участки которой стали основными системообразующими связями ЕЭС европейской части СССР; в дальнейшем и в ОЭС восточной части страны функции системообразующей сети стали переходить к сети 500 кВ, наложенной на развитую сеть 220 кВ.
Начиная с 60-х годов характерной особенностью развития электроэнергетики стало последовательное увеличение доли энергоблоков в составе вводимых мощностей ТЭС. В 1963 г. были введены первые энергоблоки 300 МВт на Приднепровской и Черепетской ГРЭС. В 1968 г. вошли в эксплуатацию энергоблок 500 МВт на Назаровской ГРЭС и энергоблок 800 МВт на Славянской ГРЭС. Все эти блоки работали на сверхкритическом давлении пара (24 МПа).
Преобладание ввода мощных агрегатов, параметры которых неблагоприятны по условиям устойчивости, усложнило задачи обеспечения надежной работы ОЭС и ЕЭС. Для решения этих задач стали необходимыми разработка и внедрение АРВ сильного действия генераторов энергоблоков; потребовалось также использование автоматики аварийной разгрузки мощных ТЭС, в том числе, автоматики аварийного управления мощностью паровых турбин энергоблоков.
Продолжалось интенсивное строительство ГЭС; в 1961 г. на Братской ГЭС вошел в строй гидроагрегат 225 МВт, в 1967 г. на Красноярской ГЭС были введены первые гидроагрегаты 500 МВт. В течение 60-х годов было завершено сооружение Братской, Боткинской и ряда других ГЭС.
В западной части страны развернулось строительство атомных электростанций. В 1964 г. вошел в эксплуатацию энергоблок 100 МВт на Белоярской АЭС и энергоблок 200 МВт на Нововоронежской АЭС; во второй половине 60-х годов были введены вторые энергоблоки на этих АЭС: 200 МВт на Белоярской и 360 МВт на Нововоронежской.
В течение 60-х годов продолжалось и было завершено формирование европейской части СССР. В 1962 г. по ВЛ 220-110 кВ соединились на параллельную работу ОЭС Юга и Северного Кавказа. В том же году были закончены работы на первой очереди опытно-промышленной линии электропередачи 800 кВ постоянного тока Волгоград-Донбасс, положившей начало межсистемной связи Центр-Юг; строительство этой ВЛ было завершено в 1965 г.


Год

Установленная мощность электростанций, млн. кВт

Высшее
напряжение,
кВ*

Протяженность ВЛ*, тыс. км

* Без ВЛ 800 кВ постоянного тока. ** В том числе ВЛ 400 кВ.
В 1966 г. замыканием межсистемных связей 330-110 кВ Северо- Запад-Центр было осуществлено присоединение на параллельную работу ОЭС Северо-Запада. В 1969 г. была организована параллельная работа ОЭС Центра и Юга по распределительной сети 330-220-110 кВ, и все энергообъединения, входящие в состав ЕЭС, стали работать синхронно. В 1970 г. по связям 220- 110 кВ Закавказье - Северный Кавказ присоединилась на параллельную работу ОЭС Закавказья.
Таким образом, в начале 70-х годов был начат переход к следующему этапу развития электроэнергетики нашей страны - формированию ЕЭС СССР. В составе ЕЭС европейской части страны в 1970 работали параллельно ОЭС Центра, Урала, Средней Волги, Северо-Запада, Юга, Северного Кавказа и Закавказья, включавшие 63 ЭЭС. Три территориальные ОЭС - Казахстана, Сибири и Средней Азии работали раздельно; ОЭС Востока находилась в стадии формирования.
В 1972 г. в состав ЕЭС СССР вошла ОЭС Казахстана (две ЭЭС этой республики - Алма-Атинская и Южноказахстанская - работали изолированно от других ЭЭС Казахской ССР и входили в состав ОЭС Средней Азии). В 1978 г. с завершением строительства транзитной ВЛ 500 кВ Сибирь-Казахстан-Урал присоединилась на параллельную работу ОЭС Сибири.
В том же 1978 г. было закончено строительство межгосударственной ВЛ 750 кВ Западная Украина (СССР) - Альбертирша (ВНР), и с 1979 г. началась параллельная работа ЕЭС СССР и ОЭС стран - членов СЭВ. С учетом ОЭС Сибири, имеющей связи с ЭЭС МНР, образовалось объединение ЭЭС социалистических стран, охватывающее громадную территорию от Улан-Батора до Берлина.
От сетей ЕЭС СССР осуществляется экспорт электроэнергии в Финляндию, Норвегию, Турцию; через преобразовательную подстанцию постоянного тока в районе г. Выборга ЕЭС СССР соединена с энергообъединением Скандинавских стран НОРДЭЛ.
Динамика структуры генерирующих мощностей в 70 и 80-х годах характеризуется нарастающим вводом мощностей на АЭС в западной части страны; дальнейшим вводом мощностей на высокоэффективных ГЭС, в основном в восточной части страны; началом работ по созданию Экибастузского топливно-энергетического комплекса; общим ростом концентрации генерирующих мощностей и увеличением единичной мощности агрегатов.

В 1971-1972 гг. на Нововоронежской АЭС были введены в эксплуатацию два водо-водяных реактора мощностью по 440 МВт (ВВЭР- 440); в 1974 г. пущен первый (головной) водографитовый реактор мощностью 1000 МВт (РБМК-1000) на Ленинградской АЭС; в 1980 г. на Белоярской АЭС введен в работу реактор-размножитель мощностью 600 МВт (БН-600); в 1980 г. на Нововоронежской АЭС был введен реактор ВВЭР-1000; в 1983 г. на Игналинской АЭС пущен первый реактор мощностью 1500 МВт (РБМК- 1500).
В 1971 г. на Славянской ГРЭС был введен в эксплуатацию энергоблок 800 МВт с одновальной турбиной; в 1972 г. в Мосэнерго вошли в строй два теплофикационных энергоблока 250 МВт; в 1980 г. на Костромской ГРЭС был введен в работу энергоблок 1200 МВт на сверхкритические параметры пара.
В 1972 г. вошла в строй первая в СССР гидроаккумулирующая электростанция (ГАЭС) - Киевская; в 1978 г. был введен в работу первый гидроагрегат 640 МВт на Саяно-Шушенской ГЭС. С 1970 по 1986 г. были введены на полную мощность Красноярская, Саратовская, Чебоксарская, Ингурская, Токтогульская, Нурекская, Усть-Илимская, Саяно- Шушенская, Зейская и ряд других ГЭС.
В 1987 г. мощность наиболее крупных электростанций достигла: АЭС - 4000 МВт, ТЭС - 4000 МВт, ГЭС - 6400 МВт. Доля АЭС в суммарной мощности электростанций ЕЭС СССР превысила 12%; доля конденсационных и теплофикационных энергоблоков 250-1200 МВт приблизилась к 60% общей мощности ТЭС.
Технический прогресс в развитии системообразующих сетей характеризуется последовательным переходом к более высоким ступеням напряжения. Освоение напряжения 750 кВ началось с ввода в эксплуатацию в 1967 г. опытно-промышленной ВЛ 750 кВ Конаковская ГРЭС- Москва. В течение 1971-1975 гг. была сооружена широтная магистраль 750 кВ Донбасс-Днепр-Винница-Западная Украина; эта магистраль была затем продолжена введенной в 1978 г. ВЛ 750 кВ СССР- ВНР. В 1975 г. была сооружена межсистемная связь 750 кВ Ленинград- Конаково, позволившая передать в ОЭС Центра избыточную мощность ОЭС Северо-Запада. Дальнейшее развитие сети 750 кВ было связано в основном с условиями выдачи мощности крупных АЭС и необходимостью усиления межгосударственных связей с ОЭС стран - членов СЭВ. Для создания мощных связей с восточной частью ЕЭС сооружается магистральная ВЛ 1150 кВ Казахстан-Урал; ведутся работы по сооружению электропередачи постоянного тока 1500 кВ Экибастуз - Центр.
Рост установленной мощности электростанций и протяженности электрических сетей 220-1150 кВ ЕЭС СССР за период 1960-1987 г. характеризуется данными, приведенными в таблице.
Единая энергетическая система страны - развивающийся по государственному плану комплекс взаимосвязанных энергообъектов, объединённых общим технологическим режимом и централизованным оперативным управлением. Объединение ЭЭС позволяет повысить темпы роста энергетических мощностей и удешевить энергетическое строительство за счет укрупнения электростанций и увеличения единичной мощности агрегатов. Концентрация энергетических мощностей с преимущественным вводом наиболее мощных экономичных агрегатов, изготавливаемых отечественной промышленностью, обеспечивает повышение производительности труда и улучшение технико-экономических показателей энергетического производства.
Объединение ЭЭС создает возможности рационального регулирования структуры расходуемого топлива с учетом изменяющейся топливной конъюнктуры; оно является необходимым условием решения комплексных гидроэнергетических проблем с оптимальным для народного хозяйства в целом использованием водных ресурсов основных рек страны. Систематическое снижение удельного расхода условного топлива на отпущенный с шин ТЭС киловатт-час обеспечивается улучшением структуры генерирующих мощностей и экономическим регулированием общего энергетического режима ЕЭС СССР.
Взаимопомощь параллельно работающих ЭЭС создает возможность значительного повышения надежности электроснабжения. Выигрыш в суммарной установленной мощности электростанций ЕЭС за счет снижения годового максимума нагрузки вследствие разновременности наступления максимумов ЭЭС и сокращения необходимой резервной мощности превышает 15 млн. кВт.
Общий экономический эффект от создания ЕЭС СССР на достигнутом к середине 80-х годов уровне ее развития (в сравнении с изолированной работой ЕЭС) оценивается снижением капитальных вложений в электроэнергетику на 2,5 млрд. руб. и уменьшением ежегодных эксплуатационных расходов примерно на 1 млрд руб.

Тепловая электростанция вырабатывают электроэнергию в результате преобразования тепловой энергии, выделяющейся при сжигании топлива. Основными видами топлива для тепловой электростанции являются природные ресурсы - газ, мазут, реже уголь и торф.
Разновидностью тепловой электростанции (ТЭС) является теплоэнергоцентраль (ТЭЦ) - тепловая электростанция, вырабатывающая не только электроэнергию, но и тепло, которое в виде горячей воды по тепловым сетям приходит в наши батареи. На рис. путь энергии от электростанции до квартиры.

В машинном зале тепловой электростанции установлен котел с водой. При сгорании топлива вода в котле нагревается до нескольких сот градусов и превращается в пар. Пар под давлением вращает лопасти турбины, турбина в свою очередь вращает генератор. Генератор вырабатывает электрический ток. Электрический ток поступает в электрические сети и по ним доходит до городов и сел, поступает на заводы, в школы, дома, больницы. Передача электроэнергии от электростанций по линиям электропередачи осуществляется при напряжениях 110-500 киловольт, то есть значительно превышающих напряжения генераторов. Повышение напряжения необходимо для передачи электроэнергии на большие расстояния. Затем необходимо обратное понижение напряжения до уровня, удобного потребителю. Преобразование напряжения происходит в электрических подстанциях с помощью трансформаторов. Через многочисленные кабели, проложенные под землей, и провода, натянутые высоко над землей, ток бежит в дома людей. А тепло в виде горячей воды поступает из ТЭЦ по теплотрассам, также находящимся под землей.


Обозначения на рисунке:
Градирня - устройство для охлаждения воды на электростанции атмосферным воздухом.
Котел паровой - закрытый агрегат для получения пара на электростанции посредством нагревания воды. Нагрев воду осуществляется посредством сжигания топлива (на саратовских ТЭЦ - газа).
ЛЭП - линия электропередачи. Предназначена для передачи электричества. Различают воздушные ЛЭП (провода, протянутые над землей) и подземные (силовые кабели).

Первые появились еще в конце XIX века в Нью-Йорке (1882 год), а в 1883 году первая тепловая электростанция была построена в России (С.Петербург). С момента своего появление, именно ТЭС получили наибольшее распространение, учитывая все увеличивающуюся энергетическую потребность наступившего техногенного века. Вплоть до середины 70-х годов прошлого века, именно эксплуатация ТЭС являлась доминирующим способом получения электроэнергии. К примеру, в США и СССР доля ТЭС среди всей получаемой электроэнергии составляла 80%, а во всем мире - порядка 73-75%.

Данное выше определение хоть и емкое, но не всегда понятное. Попытаемся своими словами объяснить общий принцип работы тепловых электростанций любого типа.

Выработка электричества в ТЭС происходить при участии множества последовательных этапов, но общий принцип её работы очень прост. Вначале топливо сжигается в специальной камере сгорания (паровом котле), при этом выделяется большое количество тепла, которое превращает воду, циркулирующую по специальным системам труб расположенным внутри котла, в пар. Постоянно нарастающее давление пара вращает ротор турбины, которая передает энергию вращения на вал генератора, и в результате вырабатывается электрический ток.

Система пар/вода замкнута. Пар, после прохождения через турбину, конденсируется и вновь превращается в воду, которая дополнительно проходит через систему подогревателей и вновь попадает в паровой котел.

Существует несколько типов тепловых электростанций. В настоящее время, среди ТЭС больше всего тепловых паротурбинных электростанций (ТПЭС) . В электростанциях такого типа, тепловая энергия сжигаемого топлива используется в парогенераторе, где достигается очень высокое давление водяного пара, приводящего в движение ротор турбины и, соответственно, генератор. В качестве топлива, на таких теплоэлектростанциях используется мазут или дизель, а также природный газ, уголь, торф, сланцы, иными словами все виды топлива. КПД ТПЭС составляет около 40 %, а их мощность может достигать 3-6 ГВт.

ГРЭС (государственная районная электрическая станция) - довольно известное и привычное название. Это не что иное, как тепловая паротурбинная электростанция, оборудованная специальными конденсационными турбинами, которые не утилизируют энергию отработанных газов и не превращают её в тепло, например, для обогрева зданий. Такие электростанции еще называют конденсационными электростанциями.

В том же случае, если ТПЭС оснащены специальными теплофикационными турбинами, преобразующих вторичную энергию отработанного пара в тепловую энергию, используемую для нужд коммунальных или промышленных служб, то это уже теплоэлектроцентрали или ТЭЦ. К примеру, в СССР на долю ГРЭС приходилось около 65% вырабатываемой паротурбинными электростанциями электроэнергии, и, соответственно, 35% - на долю ТЭЦ.

Существуют также иные виды тепловых электростанций. В газотурбинных электростанциях, или ГТЭС, генератор вращается посредством газовой турбины. В качестве топлива на таких ТЭС применяют природный газ или жидкое топливо (дизель, мазут). Однако КПД таких электростанций не очень высок, около 27-29%, так что их используют в основном как резервные источники электроэнергии для покрытия пиков нагрузки на электрическую сеть, или для снабжения электричеством небольших населенных пунктов.

Тепловые электростанции с парогазотурбинной установкой (ПГЭС) . Это электростанции комбинированного типа. Они оборудованы паротурбинными и газотурбинными механизмами, и их КПД достигает 41-44%. Эти электростанции также позволяют утилизировать тепло и превращать его в тепловую энергию, идущую на отопление зданий.

Главным недостатком всех тепловых электростанций является тип используемого топлива. Все виды топлива, которые применяют на ТЭС, являются невосполнимыми природными ресурсами, которые медленно, но неуклонно заканчиваются. Именно поэтому в настоящее время, наряду с использованием атомных электростанций, ведутся разработки механизма выработки электроэнергии при помощи восполняемых или других альтернативных источников энергии.

Современную жизнь невозможно представить без электричества и тепла. Материальный комфорт, который окружает нас сегодня, как и дальнейшее развитие человеческой мысли накрепко связаны с изобретением электричества и использованием энергии.

С древних времен люди нуждались в силе, точнее в двигателях, которые давали бы им силу большую человеческой, для того, чтобы строить дома, заниматься земледелием, осваивать новые территории.

Первые аккумуляторы пирамид

В пирамидах Древнего Египта ученые нашли сосуды, напоминающие аккумуляторы. В 1937 году во время раскопок под Багдадом немецкий археолог Вильгельм Кениг обнаружил глиняные кувшины, внутри которых находились цилиндры из меди. Эти цилиндры были закреплены на дне глиняных сосудов слоем смолы.

Впервые явления, которые сегодня называют электрическими, были замечены в древнем Китае, Индии, а позднее в древней Греции. Древнегреческий философ Фалес Милетский в VI веке до нашей эры отмечал способность янтаря, натертого мехом или шерстью, притягивать обрывки бумаги, пушинки и другие легкие тела. От греческого названия янтаря – «электрон» – это явление стали называть электризацией.

Сегодня нам уже будет нетрудно разгадать «тайну» янтаря, натертого шерстью. В самом деле, почему янтарь электризуется? Оказывается, при трении шерсти о янтарь на его поверхности появляется избыток электронов, и возникает отрицательный электрический заряд. Мы как бы «отбираем» электроны у атомов шерсти и переносим их па поверхность янтаря. Электрическое поле, созданное этими электронами, притягивает бумагу. Если вместо янтаря взять стекло, то здесь наблюдается другая картина. Натирая стекло шелком, мы «снимаем» о его поверхности электроны. В результате на стекле оказывается недостаток электронов, и оно заряжается положительно. Впоследствии, чтобы различать эти заряды, их стали условно обозначать знаками, дошедшими до наших дней, минус и плюс.

Описав удивительные свойства янтаря в поэтических легендах, древние греки так и не продолжили его изучение. Следующего прорыва в деле покорения свободной энергии человечеству пришлось ждать много веков. Зато когда он все-таки был совершен, мир в буквальном смысле слова преобразился. Еще в 3 тысячелетии до н.э. люди использовали паруса для лодок, но только в VII в. н.э. изобрели ветряную мельницу с крыльями. Началась история ветряных двигателей. Водяные колеса использовали на Ниле, Эфрате, Янцзы для подъема воды, вращали их рабы. Водяные колеса и ветряные мельницы вплоть до ХVII века являлись основными типами двигателей.

Эпоха открытий

В истории попыток использования пара записаны имена многих ученых и изобретателей. Так Леонардо да Винчи оставил 5000 страниц научных и технических описаний, чертежей, эскизов различных приспособлений.

Джанбаттиста делла Порта исследовал образование пара из воды, что было важно для дальнейшего использования пара в паровых машинах, исследовал свойства магнита.

В 1600 году придворный врач английской королевы Елизаветы Уильям Гилберт изучил все, что было известно древним народам о свойствах янтаря, и сам провел опыты с янтарем и магнитами.

Кто придумал электричество?

Термин "электричество" ввел английский естествоиспытатель, лейб-медик королевы Елизаветы Уильям Гилберт. Впервые он употребил это слово в своем трактате «О магните, магнитных телах и о большом магните – Земле» в 1600 году. Ученый объяснял действие магнитного компаса, а также приводил описания некоторых опытов с наэлектризованными телами.

В целом практических знаний об электричестве за XVI – XVII столетия было накоплено не так уж много, но все открытия были предвестниками по-настоящему больших перемен. Это было время, когда опыты с электричеством ставили не только ученые, но и аптекари, и врачи, и даже монархи.

Одним из опытов французского физика и изобретателя Дени Папена было создание вакуума в закрытом цилиндре. В середине 1670-х годов в Париже он вместе с голландским физиком Кристианом Гюйгенсом работал над машиной, которая вытесняла воздух из цилиндра путём взрыва пороха в нем.

В 1680 году Дени Папен приехал в Англию и создал вариант такого же цилиндра, в котором получил более полный вакуум с помощью кипящей воды, которая конденсировалась в цилиндре. Таким образом, он смог поднять груз, присоединённый к поршню верёвкой, перекинутой через шкив.

Система работала, как демонстрационная модель, но для повторения процесса весь аппарат должен был быть демонтирован и повторно собран. Папен быстро понял, что для автоматизации цикла пар должен быть произведён отдельно в котле. Французский учёный изобрёл паровой котёл с рычажным предохранительным клапаном.

В 1774 году Уатт Джеймс в результате ряда экспериментов создал уникальную паровую машину. Для обеспечения работы двигателя он применил центробежный регулятор, соединённый с заслонкой на выпускном паропроводе. Уатт детально исследовал работу пара в цилиндре, впервые сконструировав для этой цели индикатор.

В 1782 году Уатт получил английский патент на паровой двигатель с расширением. Он же ввёл первую единицу мощности - лошадиную силу (позднее его именем была названа другая единица мощности - ватт). Паровая машина Уатта благодаря экономичности получила широкое распространение и сыграла огромную роль в переходе к машинному производству.

Итальянский анатом Луиджи Гальвани в 1791 году опубликовал труд «Трактат о силах электричества при мышечном движении».

Это открытие через 121 год дало толчок исследованиям человеческого организма с помощью биоэлектрических токов. Обнаруживались больные органы при исследовании их электрических сигналов. Работа любого органа (сердца, мозга) сопровождается биологическими электрическими сигналами, имеющими для каждого органа свою форму. Если орган не в порядке, сигналы изменяют свою форму, и при сравнении «здоровых» и «больных» сигналов обнаруживаются причины заболевания.

Опыты Гальвани натолкнули на изобретение нового источника электричества профессора Тессинского университета Алессандро Вольта. Он дал опытам Гальвани с лягушкой и разнородными металлами иное объяснение, доказал, что электрические явления, которые наблюдал Гальвани, объясняются только тем, что определенная пара разнородных металлов, разделенная слоем специальной электропроводящей жидкости, служит источником электрического тока, протекающего по замкнутым проводникам внешней цепи. Эта теория, разработанная Вольтой в 1794 году, позволила создать первый в мире источник электрического тока, который назывался Вольтов столб.

Он представлял собой набор пластин из двух металлов, меди и цинка, разделенных прокладками из войлока, смоченного в соляном растворе или щелочи. Вольта создал прибор, способный за счет химической энергии производить электризацию тел и, следовательно, поддерживать в проводнике движение зарядов, то есть электрический ток. Скромный Вольта назвал свое изобретение в честь Гальвани «гальваническим элементом», а электрический ток, получающийся от этого элемента – «гальваническим током».

Первые законы электротехники

В начале XIX века опыты с электрическим током привлекали внимание ученых из разных стран. В 1802 году итальянский ученый Романьози обнаружил отклонение магнитной стрелки компаса под влиянием электрического тока, протекавшего по расположенному вблизи проводнику. В 1820 году это явление в своем докладе подробно описал датский физик Ганс Христиан Эрстед. Небольшая, всего в пять страниц, книжка Эрстеда в том же году была издана в Копенгагене на шести языках и произвела огромное впечатление на коллег Эрстеда из разных стран.

Однако правильно объяснить причину явления, которое описал Эрстед, первым сумел французский ученый Андре Мари Ампер. Оказалось, ток способствует возникновению в проводнике магнитного поля. Одной из важнейших заслуг Ампера было то, что он впервые объединил два разобщенных ранее явления – электричество и магнетизм – одной теорией электромагнетизма и предложил рассматривать их как результат единого процесса природы.

Воодушевленный открытиями Эрстеда и Ампера, другой ученый, англичанин Майкл Фарадей предположил, что не только магнитное поле может воздействовать на магнит, но и наоборот – двигающийся магнит будет оказывать воздействие на проводник. Серия опытов подтвердила эту блестящую догадку – Фарадей добился того, что подвижное магнитное поле создало в проводнике электрический ток.

Позже это открытие послужило основой для создания трех главных устройств электротехники – электрического генератора, электрического трансформатора и электрического двигателя.

Начальный период использования электричества

У истоков освещения с помощью электричества стоял Василий Владимирович Петров, профессор медицинско-хирургической Академии в Петербурге. Исследуя световые явления, вызываемые электрическим током, он в 1802 году сделал свое знаменитое открытие – электрическую дугу, сопровождающуюся появлением яркого свечения и высокой температуры.

Жертвы ради науки

Русский учёный Василий Петров, первым в мире в 1802 году описавший явление электрической дуги, не жалел себя при проведении экспериментов. В то время не было таких приборов, как амперметр или вольтметр, и Петров проверял качество работы батарей по ощущению от электрического тока в пальцах. Чтобы чувствовать слабые токи, учёный срезал верхний слой кожи с кончиков пальцев.

Наблюдения и анализ Петровым свойств электрической дуги легли в основу создания электродуговых ламп, ламп накаливания и много другого.

В 1875 году Павел Николаевич Яблочков создает электрическую свечу, состоящую из двух угольных стержней, расположенных вертикально и параллельно друг другу, между которыми проложена изоляция из каолина (глины). Чтобы горение было более продолжительным, на одном подсвечнике помещалось четыре свечи, которые горели последовательно.

В свою очередь, Александр Николаевич Лодыгин ещё в 1872 году предложил вместо угольных электродов использовать нить накаливания, которая при протекании электрического тока ярко светилась. В 1874 году Лодыгин получил патент на изобретение лампы накаливания с угольным стерженьком и ежегодную Ломоносовскую премию Академии наук. Устройство было запатентовано также в Бельгии, Франции, Великобритании, Австро-Венгрии.

В 1876 году Павел Яблочков завершил разработку конструкции электрической свечи, начатой в 1875 г. и 23 марта получил французский патент, содержащий краткое описание свечи в её первоначальных формах и изображение этих форм. «Свеча Яблочкова» оказалась проще, удобнее и дешевле в эксплуатации, чем лампа А. Н. Лодыгина. Под названием «русский свет» свечи Яблочкова использовались позже для уличного освещения во многих городах мира. Так же Яблочков предложил первые практически применявшиеся трансформаторы переменного тока с разомкнутой магнитной системой.

Тогда же в 1876 году в России была сооружена первая электростанция на Сормовском машиностроительном заводе, ее прародительница была построена в 1873 году под руководством бельгийско-французского изобретателя З.Т. Грамма для питания системы освещения завода, так называемая блок-станция.

В 1879 русские электротехники Яблочков, Лодыгин и Чиколев совместно с рядом других электротехников и физиков организовали в составе Русского технического общества Особый Электротехнический отдел. Задачей отдела было содействие развитию электротехники.

Уже в апреле 1879 года впервые в России электрическими фонарями освещен мост – мост Александра II (ныне Литейный мост) в Санкт-Петербурге. При содействии Отдела на Литейном мосту введена первая в России установка наружного электрического освещения (дуговыми лампами Яблочкова в светильниках, изготовленных по проекту архитектора Кавоса), положившая начало созданию местных систем освещения дуговыми лампами некоторых общественных зданий Петербурга, Москвы и других больших городов. Электрическое освещение моста устроенное В.Н. Чиколевым, где горело 12 свечей Яблочкова вместо 112 газовых рожков, функционировало всего 227 дней.

Трамвай Пироцкого

Вагон электрического трамвая изобрел Федор Аполлонович Пироцкий в 1880 году. Первые трамвайные линии в Санкт-Петербурге были проложены только зимой 1885 года по льду Невы в районе Мытнинской набережной, так как право на использование улиц для пассажирских перевозок имели только владельцы конок – рельсового транспорта, который передвигался при помощи лошадей.

В 80-е годы возникли первые центральные станции, они были более целесообразны и более экономичны, чем блок-станции, так как снабжали электричеством сразу много предприятий.

В то время массовыми потребителями электроэнергии были источники света – дуговые лампы и лампы накаливания. Первые электростанции Петербурга вначале размещались на баржах у причалов рек Мойки и Фонтанки. Мощность каждой станции составляла примерно 200 кВт.

Первая в мире центральная станция была пущена в работу в 1882 году в Нью-Йорке, она имела мощность 500 кВт.

В Москве электрическое освещение впервые появилось в 1881 году, уже в 1883 году электрические светильники иллюминировали Кремль. Специально для этого была сооружена передвижная электростанция, которую обслуживали 18 локомобилей и 40 динамо-машин. Первая стационарная городская электростанция появилась в Москве в 1888 году.

Нельзя забывать и о нетрадиционных источниках энергии.

Предшественница современных ветроэлектростанций с горизонтальной осью имела мощность 100 кВт и была построена в 1931 году в Ялте. Она имела башню высотой 30 метров. К 1941-му году единичная мощность ветроэлектростанций достигла 1,25 МВт.

План ГОЭЛРО

В России создавались электростанции в конце XIX и начале XX веков, однако, бурный рост электроэнергетики и теплоэнергетики в 20-е годы XX столетия после принятия по предложению В.И. Ленина плана ГОЭЛРО (Государственной электрификации России).

22 декабря 1920 года VIII Всероссийский съезд Советов рассмотрел и утвердил Государственный план электрификации России – ГОЭЛРО, подготовленный комиссией, под председательством Г.М. Кржижановского.

План ГОЭЛРО должен был быть реализован в течении десяти-пятнадцати лет, а его результатом должно было стать создание «крупного индустриального хозяйства страны». Для экономического развития страны это решение имело огромное значение. Недаром свой профессиональный праздник российские энергетики отмечают именно 22 декабря.

В плане много уделялось проблеме использования местных энергетических ресурсов (торфа, воды рек, местного угля и др.) для производства электрической энергии.

8 октября 1922 года состоялся официальный пуск станции «Уткина заводь» - первой торфяной электростанции в Петрограде.

Первая ТЭЦ России

Самая первая тепловая электростанция, построенная по плану ГОЭЛРО в 1922 году, называлась «Уткина заводь». В день пуска участники торжественного митинга переименовали ее в «Красный октябрь», и под этим именем она проработала до 2010 года. Сегодня это Правобережная ТЭЦ ПАО «ТГК-1».

В 1925 году запустили Шатурскую электростанцию на торфе, в тот же год на Каширской электростанции начали освоение новой технологии сжигания подмосковного угля в виде пыли.

Днем начала теплофикации в России можно считать 25 ноября 1924 года – тогда заработал первый теплопровод от ГЭС-3, предназначенный для общего пользования в доме номер девяносто шесть на набережной реки Фонтанки. Электростанция № 3, которую переоборудовали для комбинированной выработки тепловой и электрической энергии, является первой в России теплоэлектроцентралью, а Ленинград – пионером теплофикации. Централизованное снабжение горячей водой жилого дома функционировало без сбоев, и через год ГЭС-3 стало снабжать горячей водой бывшую Обуховскую больницу и бани, находящиеся в Казачьем переулке. В ноябре 1928 года к тепловым сетям государственной электростанции № 3 подключили здание бывших Павловских казарм, располагавшихся на Марсовом поле.

В 1926 году была пущена в эксплуатацию мощная Волховская ГЭС, энергия которой по линии электропередачи напряжением 110 кВ, протяженностью 130 км поступала в Ленинград.

Атомная энергетика XX века

20 декабря 1951 года, ядерный реактор впервые в истории произвел пригодное для использования количество электроэнергии - в нынешней Национальной Лаборатории INEEL Департамента энергии США. Реактор выработал достаточную мощность, чтобы зажечь простую цепочку из четырех 100-ваттных лампочек. После второго эксперимента, проведенного на следующий день, 16 участвовавших в нем учёных и инженеров «увековечили» свое историческое достижение, написав мелом свои имена на бетонной стене генератора.

Советские ученые приступили к разработке первых проектов мирного использования атомной энергии ещё во второй половине 1940-х годов. А 27 июня 1954 года в городе Обниск была запущена первая атомная электростанция.

Пуск первой АЭС ознаменовал открытие нового направления в энергетике, получившего признание на 1-й Международной научно-технической конференции по мирному использованию атомной энергии (август 1955, Женева). К концу ХХ века в мире насчитывалось уже более 400 атомных электростанций.

Современная энергетика. Конец XX века

Конец XX века ознаменован различными событиями, связанными как с высокими темпами строительства новых станции, началом развития возобновляемых источников энергии, ак и с появлением первых проблем от сформировавшейся огромной мировой энергосистемы и попытками их решить.

Блэкаут

Американцы называют ночь на 13 июля 1977 «Ночью страха». Тогда случилась огромная по своим размерам и последствиям авария на электрических сетях в Нью-Йорке. Из-за попадания молнии в линию электропередачи на 25 часов была прервана подача электричества в Нью-Йорк и 9 млн жителей оказались без электроснабжения. Трагедии сопутствовал финансовый кризис, в котором пребывал мегаполис, необыкновенно жаркая погода, и небывалый разгул преступности. После отключения электричества на фешенебельные кварталы города набросились банды из бедных кварталов. Считается, что именно после тех страшных событий в Нью-Йорке понятие «блэкаут» стало повсеместно использоваться применительно к авариям в электроэнергетике.

Так как современное сообщество всё больше зависит от электроэнергии, аварии на электросетях наносят ощутимые убытки предприятиям, населению и правительствам. Во время аварии выключаются осветительные приборы, не работают лифты, светофоры, метро. На жизненно важных объектах (больницы, военные объекты и т. д.) для функционирования жизнедеятельности во время аварий в энергосистемах используются автономные источники питания: аккумуляторы, генераторы. Статистика показывает значительное увеличение аварий в 90-е гг. XX - начале XXI вв.

В те годы продолжалось развитие альтернативной энергетики. В сентябре 1985 года состоялось пробное включение генератора первой солнечной электростанции СССР в сеть. Проект первой в СССР Крымской СЭС был создан в начале 80-х в рижском отделении института «Атомтеплоэлектропроект» при участии тринадцати других проектно-конструкторских организаций Министерства энергетики и электрификации СССР. Полностью станция вступила в строй в 1986 году.

В 1992 году началось строительство крупнейшей в мире ГЭС «Три ущелья» в Китае на реке Янцзы. Мощность станции - 22,5 ГВт. Напорные сооружения ГЭС образуют крупное водохранилище площадью 1 045 км², полезной ёмкостью 22 км³. При создании водохранилища было затоплено 27 820 га обрабатываемых земель, было переселено около 1,2 млн человек. Под воду ушли города Ваньсянь и Ушань. Полное завершение строительства и ввод в официальную эксплуатацию состоялся 4 июля 2012 года.

Развитие энергетики неотделимо от проблем, связанных с загрязнением окружающей среды. В Киото (Япония) в декабре 1997 года в дополнение к Рамочной конвенции ООН об изменении климата был принят Киотский протокол. Он обязывает развитые страны и страны с переходной экономикой сократить или стабилизировать выбросы парниковых газов в 2008 – 2012 годах по сравнению с 1990 годом. Период подписания протокола открылся 16 марта 1998 года и завершился 15 марта 1999 года.

По состоянию на 26 марта 2009 Протокол был ратифицирован 181 страной мира (на эти страны совокупно приходится более чем 61 % общемировых выбросов). Заметным исключением из этого списка являются США. Первый период осуществления протокола начался 1 января 2008 года и продлится пять лет до 31 декабря 2012 года, после чего, как ожидается, на смену ему придёт новое соглашение.

Киотский протокол стал первым глобальным соглашением об охране окружающей среды, основанным на рыночном механизме регулирования - механизме международной торговли квотами на выбросы парниковых газов.

XXI век, а точнее 2008 год, стал знаковым для энергетической системы России, было ликвидировано Российское открытое акционерное общество энергетики и электрификации «ЕЭС России» (ОАО РАО «ЕЭС России»)-российская энергетическая компания, существовавшая в 1992-2008 годах. Компания объединяла практически всю российскую энергетику, являлась монополистом на рынке генерации и энерготранспортировки России. На её месте возникли государственные естественно-монопольные компании, а также приватизированные генерирующие и сбытовые компании.

В XXI веке в России строительство электростанций выходит на новый уровень, начинается эра применения парогазового цикла. Россия способствует наращиванию новых генерирующих мощностей. 28 сентября 2009 года началось строительство Адлерской теплоэлектростанции. Станция будет создана на основе 2-х энергоблоков парогазовой установки общей мощностью 360 МВт (тепловая мощность - 227 Гкал/ч) с КПД 52%.

Современная технология парогазового цикла обеспечивает высокий КПД, низкий расход топлива и снижение уровня вредных выбросов в атмосферу в среднем на 30% по сравнению с традиционными паросиловыми установками. В будущем ТЭС должна стать не только источником тепла и электричества для объектов зимних Олимпийских игр 2014 года, но и весомым вкладом в энергобаланс г. Сочи и прилегающих районов. ТЭС включена в утвержденную Правительством РФ Программу строительства олимпийских объектов и развития г. Сочи как горноклиматического курорта.

24 июня 2009 года в Израиле заработала первая гибридная солнечно-газовая электростанция. Построена она из 30 солнечных отражателей и одной "цветочной" башни. Для сохранения мощности системы 24 часа в сутки, она может переключиться на газовую турбину во время наступления темноты. Установка занимает относительно немного места, и может работать в удалённых районах, которые не подключены к центральным энергетическим системам.

Новые технологии, используемые в гибридных станциях, постепенно распространяются по всему миру, так в Турции планируется построить гибридную электростанцию, которая будет работать одновременно уже на трех источниках возобновляемой энергии - на ветре, природном газе и солнечной энергии.

Альтернативная электростанция спроектирована так, что все ее составляющие дополняют друг друга, поэтому американские специалисты сошлись во мнении, что в будущем у подобных станций есть все шансы стать конкурентоспособными, и поставлять электричество по умеренной цене.

Электроэнергия способствовала развитию прогресса, она служит ключевым фактором в функционировании любого направления народного хозяйства. Сегодня используется повсеместно, оно стало естественным и привычным явлением для каждого человека, однако, так было не всегда. Когда же появилась первая электростанция в России , то есть «фабрика, производящая электрическую энергию»?

Начало развития электроэнергетики

Бытует ложное мнение о появлении электрической энергии в стране лишь после прихода большевиков, подписанным декретом Ленина «Об электрификации». Но первые электростанции в России были построены задолго до возникновения СССР. Еще в 1879 году, во времена правления императора Александра II (дедушки Николая II) в Северной Столице была . Это была небольшая установка, ее предназначением было освещать Литейный мост, проект был реализован под руководством инженера П. Яблочкова. Спустя некоторое время, аналогичная электростанция строится в Москве, она обеспечивала освещение Лубянского пассажа. Спустя 5 лет такие станции располагались во многих крупных городах Российской империи, они функционировали на твердом топливе и были способны производить электроэнергию для освещения.

Гидроэлектростанции - развитие прогресса

Одновременно с стали проектировать установки, способные вырабатывать электроэнергию, используя для этого природные стихии. Где была построена первая электростанция в России , перерабатывающая энергию движения воды в электричество? Первая станция была построена также в , она располагалась на реке Охта и имела малую по современным меркам мощность, всего 350 лошадиных сил. Более мощная гидроэлектростанция была построена в 1903 году на реке Подкумке около Ессентуков. Ее мощности было достаточно для освящения близлежащих городов: Пятигорска, Железноводска, Кисловодска.

Строительство электростанции в России - основное назначение

Начало XX века принесли в мир серьезные изменения, индустриализация, машиностроение требовали большое количество потребляемой электроэнергии. Строительство электростанций стало важной составляющей развития технического прогресса, в том числе в следующих отраслях:

В общем, без электричества и станций, которые его вырабатывают, наш мир не был бы таким, каким мы его привыкли видеть.

Строительство АЭС в РФ


На сегодняшний день самым дешевым и доступным видом электроэнергии остается . Использование цепной ядерной реакции позволяет вырабатывать колоссальные объемы тепловой энергии, которую перерабатывают в электричество. Достоверно известно, когда появилась первая электростанция на территории современной России, работающая на атомной энергии. В 1954 году советские ученые во главе с академиком Курчатовым реализовали проект по созданию «мирного атома», постройка Обнинской АЭС прошла в рекордно короткие сроки.

Мощность первого реактора была незначительной, всего 5МВт, для сравнения самая мощная из современных электростанций Касивадзаки-Карива производит 8122МВТ.

На территории России осуществляется полноценный цикл, от добычи и переработки урана, до постройки, последующей эксплуатации АЭС и утилизации отходов производства.

Дальнейшие перспективы развития отрасли

Потребность в электроэнергии с каждым годом растет, соответственно с увеличением потребления должно пропорционально возрастать объемы производства электричества. Для этих целей строятся новые и модернизируются уже существующие электростанции.

Кроме уже существующих станций начинают появляться новые экологически безопасные проекты, обеспечивающие население необходимой энергией.

Большой потенциал у и станций, а также использование энергии приливов и отливов. Каждый год в мире появляются новые изобретения, обеспечивающие новые источники электричества, что соответственно, способствует дальнейшему развитию прогресса.

Роль России в мировом развитии и строительстве электростанций

Страна стояла у истоков развития данной отрасли, часто на несколько лет опережая ближайших конкурентов в данном направлении, а именно США. Так первая зарубежная АЭС появилась лишь 1958 году, то есть спустя 4 года после успешной реализации проекта советскими учеными и инженерами. Сегодня Россия является одним из основных производителей электроэнергии в мире, а также успешно реализовывает проекты по строительству атомных ректоров во многих странах мира. Целесообразность постройки такой станции актуальна лишь в случае наличия большого промышленного потенциала, реализация проекта требует значительных затрат, окупаемость составляет порой несколько десятилетий, при учете бесперебойной эксплуатации. Тепловые станции требуют постоянные источники топлива, а гидроэлектростанции наличие крупной водной артерии.