Обогащенный уран 235. Зачем нужно обогащать уран? Подробный разбор. Переработка урана в ядерное топливо


Это сверхвысокотехнологичная сфера. Если Запад (прежде всего, США) пошел по линии газодиффузионного обогащения, то СССР — по пути центрифуг. В результате оказалось, что и по затратам энергии на обогащение урана, и по эффективности обогащения «русский способ» лучше американского минимум в 20 раз. ...

Тот, кто добывает и лучше и дешевле обогащает уран, одновременно получает возможности доминировать и на рынке строительства АЭС - одновременно и быстрорастущем, и высокотехнологичном. Это один из главных мировых рынков, на котором продается наиболее выгодная продукция: как говорят экономисты, «с высокой добавленной стоимостью». Равных России в данной сфере пока нет.

Оригинал взят у arctus

* * *
Добыть природный уран — это полдела. Для того чтобы он мог работать в реакторе, давая энергию, его нужно обогатить. То есть увеличить в нем содержание изотопа U235 примерно в пять раз. А это занятие очень и очень непростое, поскольку U235 от своего полного химического «родственника» U238 отличается совсем чуть-чуть — всего тремя нейтронами из имеющихся в ядре более чем двухсот тридцати.

Известны три способа обогащения урана. Причем все они требуют использования урана в виде газообразного соединения с минимумом «лишних» атомов в молекуле. Наиболее удобным из таких соединений оказался гексафторид, в котором «тяжелый» атом урана соединен с шестью «легкими» атомами фтора, и который превращается в газ при температуре 56,5°С.

Первый способ обогащения — газодиффузионный. В нем гексафторид урана «продавливается» через мелкопористую среду, и в результате более легкие молекулы с U235 «забегают вперед», накапливаясь во фронтальной части газодиффузионной колонны.

Второй способ обогащения — газоцентрифужный. В нем гексафторид урана поступает во вращающуюся с большой скоростью центрифугу, и в ней более легкие молекулы с U235 накапливаются ближе к оси вращения, а более тяжелые молекулы с U238 «отбрасываются» к стенкам и удаляются.

Третий способ (который пока не вышел из опытно-производственной стадии) — лазерно-электростатический. В нем лазерное излучение с очень точно подобранным уровнем энергии избирательно «выбивает» электроны из атомов U235 в гексафториде, превращая их в положительно заряженные ионы. А далее эти ионы «прилипают» к отрицательному электроду обогатительной установки.

Сложно? На самом деле гораздо сложнее, чем здесь написано. И не только сложно, но еще и весьма дорого. А потому стран, которые имеют собственные мощности обогащения урана, в мире всего 15. В алфавитном порядке: Аргентина, Бразилия, Великобритания, Германия, Израиль, Индия, Иран, Китай, Бельгия, Северная Корея, Пакистан, Россия, США, Франция, Япония. Причем у России — 40% мировых мощностей обогащения урана, у США — 20%, у Франции — 15%, у Германии, Великобритании и Бельгии вместе — 22%, у остального мира — всего 3%.

Но ведь обогащать уран можно по-разному. Можно до энергетических 3,5% U235, а можно и до оружейных 80-90% U235 (и затем делать ядерное оружие). И потому страны, которые занимаются обогащением урана, обязаны поставить свои обогатительные комплексы под контроль и инспектирование МАГАТЭ.

Однако для нашей темы важнее другое.

Поскольку на первых стадиях «ядерной гонки» между Западом и СССР главным вопросом были бомбы, сфера обогащения урана была строго засекречена. И если Запад (прежде всего, США) пошел по линии газодиффузионного обогащения, то СССР — по пути центрифуг.

В результате оказалось, что и по затратам энергии на обогащение урана, и по эффективности обогащения «русский способ» лучше американского минимум в 20 раз! Вот какое «экономическое ядерное оружие» придумали и создали советские умельцы. Причем за более чем 20 лет, прошедшие после раскрытия части советских «центрифужных» секретов, ни США, ни какая-либо другая страна в этой сфере «догнать и перегнать» Россию не смогла. Сейчас у США и Франции только появляются современные качественные центрифуги, но достаточного количества заводов, способных поставить дешевое хорошее обогащение на промышленный поток, еще нет. И построить такие заводы — опять-таки дело сложное и долгое.
* * *
Из отрывка работы Ю.В. Бялого по ядерной энергетике в рамках цикла "Большая энергетическая война".
Читайте :
- о ресурсообеспеченности ядерной энергетики;
- первой десятка стран-обладателей этих резервов;
- мировая борьба за контроль имеющихся крупных месторождений урана, горячая и "тихая";
- важные ньюансы контрактов на строительство АЭС.

Правда что ли, скажете вы, природный уран никому не нужен? Давайте посмотрим на потребление.

В данный момент спросом в мире пользуются следующие виды обогащенного урана:

  • 1. Природный уран (0,712%). Тяжеловодные реакторы (PHWR), например CANDU
  • 2. Слабо-обогащенный уран (2-3%, 4-5%). Реакторы типа вода-графит-цирконий, вода-вода-цирконий, реакторы ВВЭР, PWR, РБМК
  • 3. Средне обогащённый уран (15-25%), Быстрые реакторы, реакторы транспортных (ледоколы, ПАТЭС) ЯЭУ
  • 4. Высокообогащенный уран (>50%), ТрЯЭУ (подлодки), исследовательские реакторы.
Природный уран проходит только по первому пункту. Если предположить, что у нас в мире потребители урана это только коммерческие реакторы, то PHWR из них - это менее 10%. А если считать все остальное (транспортные, исследовательские) то… короче говоря природный уран ни к селу ни к городу. А значит почти любой потребитель требует наращивания процентного содержания легкого изотопа в смеси 235-238. Более того, уран используется не только в ядерной энергетике, но и в производстве брони, боеприпасов, и еще кое-чего. А там лучше иметь обедненный уран, что в принципе требует тех же процессов, только наоборот.

Про методы обогащения и будет статья.

В качестве сырья для обогащения используют не чистый металлический уран, а гексафторид урана UF 6 , который по совокупности свойств является наиболее подходящим химическим соединением для изотопного обогащения. Для химиков отметим, что фторирование урана происходит в вертикальном плазменном реакторе.
Несмотря на все обилие методов обогащения на сегодняшний день только две из них используются в промышленных масштабах - газовая диффузия и центрифуги. В обоих случаях используется газ - UF 6 .

Ближе к делу о разделении изотопов. Для любого метода эффективность разделения изотопов характеризуется коэффициентом разделения α – отношение доли «легкого» изотопа в «продукте» к его доле в первичной смеси.

Для большинства методов α лишь немного больше единицы, поэтому для получения высокой изотопной концентрации единичную операцию разделения изотопов приходится многократно повторять (каскады). Например, для газодиффузионного метода α=1.00429, для центрифуг значение сильно зависит от окружной скорости – при 250м/с α=1.026, при 600м/с α=1.233. Только при электромагнитном разделении α составляет 10-1000 за 1 цикл разделения. Сравнительная таблица по нескольким параметрам будет в конце.

Весь каскад машин по обогащению всегда разбит на ступени. В первой ступени каскада разделения поток исходной смеси разбивается на два потока: обедненный (удаляемый из каскада), и обогащенный. Обогащенный подается на 2-ю ступень. На 2-й ступени однажды обогащенный поток вторично подвергается разделению:
обогащенный поток 2-й ступени поступает на 3-ю, а ее обедненный поток возвращается на предыдущую (1-ю) и т.д. С последней ступени каскада отбирается готовый продукт с требуемой концентрацией заданного изотопа.

Коротко расскажу про основные методы разделения, применявшиеся когда либо в мире.

Электромагнитное разделение

По этому методу возможно разделить компоненты смеси в магнитном поле, причем с высокой чистотой. Электромагнитное разделение является исторически первым методом, освоенным для разделения изотопов урана.

Поскольку разделение можно выполнить с ионами урана, то конверсия урана в UF 6 в принципе - не обязательна. Этот метод дает высокую чистоту, но низкий выход при больших энергозатратах. Вещество, изотопы которого требуется разделить, помещается в тигель ионного источника, испаряется и ионизуется. Ионы вытягиваются из ионизационной камеры сильным электрическим полем. Ионный пучок попадает в вакуумную разделительную камеру в магнитном поле Н, направленном перпендикулярно движению ионов. В результате ионы движутся по своим окружностям с различными (в зависимости от массы) радиусами кривизны. Достаточно взглянуть на картинку и вспомнить школьные уроки, где все мы считали, по какому радиусу полетит электрон или протон в магнитном поле.

Схема, демонстрирующая принцип электромагнитного разделения.

Преимущество способа – использование относительно простой технологии (калютроны : CAL ifornia U niversity).
Применялся для обогащения урана на заводе Y-12 (США), имел 5184 разделительные камеры - «калютроны», и впервые позволил получить килограммовые количества 235U высокого обогащения – 80% или выше.

В Манхэттенском проекте калютоны использовались после термодиффузии – на альфа-калютроны поступало сырье 7% (завод Y-12) и обогащась до 15%. Уран оружейного качества (до 90%) получался на бета-калютронах на заводе Y-12. Альфа и бета калютроны не имеют ничего общего с альфа и бета частицами, просто это две «линии» калютронов, одна для предварительного, вторая для конечного обогащения.

Метод позволяет разделять любые комбинации изотопов, обладает очень высокой степенью разделения. Двух проходов достаточно для обогащения выше 80% из бедного вещества с исходным содержанием менее 1%. Производительность определяется значением ионного тока и эффективностью улавливания ионов - до нескольких граммов изотопов в сутки (суммарно по всем изотопам).


Один из цехов электромагнитного разделения в Ок-Ридже (США)


Гигантский альфа-калютрон того же завода

Диффузионные методы

Диффузионные методы применялись для начального обогащения. На ряду с электромагнитным методом – исторически один из первых. Под диффузионным методом обычно понимают газовую диффузию – когда гексафторид урана нагревают до определенной температуры и пропускают через «сито» - специальной конструкции фильтр с отверстиями определённого размера.
Если пропускать газ, состоящий из двух сортов молекул (в нашем случае двух изотопов), через малое отверстие или через сетку, состоящую из большого числа малых отверстий, то оказывается, что более легкие молекулы газа проходят в большем количестве, нежели тяжелые. Существенно отметить, что это явление имеет место только тогда, когда молекулы проходят через отверстие, не сталкиваясь в нем,… т.е., когда длина свободного пробега молекулы больше диаметра отверстия. Соответственно, газ, прошедший мимо сеток, оказывается обедненным легкими молекулами. Практически же всегда имеет место обратное просачивание газа сквозь сетку, вследствие чего в действительности увеличение концентрации легкого изотопа (обогащение) оказывается несколько меньшим.

Ключевым моментом тут является фраза про размер отверстий. Первоначально сетки делали механическим способом, как сейчас – никто не знает. Более того материал - должен работать при повышенной температуре, а сами отверстия не должны закупориваться, из размер не должен меняться под действием коррозии и др. Технологии изготовления диффузионных барьеров засекречены до сих пор – такие же ноу-хау, как и с центрифугами.

Подробнее под спойлером, из того же доклада.

«О состоянии научно-исследовательских и практических работ Лаборатории № 2 по получению урана-235 диффузионным методом»

Обогащение оказывается тем большим, чем больше перепад давления на сетке. Перепад давления создается обычно компрессором (насосом), осуществляющим движение газа между сетками. Такая система, состоящая из сеток и компрессора, движущего газ, и является разделительной ступенью

В качестве газа мы употребляем шестифтористый уран. Это соль, обладающая довольно высокой упругостью пара при комнатной температуре. Что касается сеток, то к ним предъявляется требование, чтобы диаметр отверстия их был меньше длины свободного пробега молекул шестифтористого урана. Последняя, как это хорошо известно, обратно пропорциональна давлению газа. При атмосферном давлении длина свободного пробега молекул приблизительно равна 1/10000 мм. Поэтому, если бы мы умели делать тонкую сетку с отверстиями меньше 1/10 000 мм, мы могли бы работать с газом при атмосферном давлении.

В настоящее время мы научились делать сетки с отверстиями около 5/1000 мм, т.е. в 50 раз большими длины свободного пробега молекул при атмосферном давлении. Следовательно, давление газа, при котором разделение изотопов на таких сетках будет происходить, должно быть меньше 1/50 атмосферного давления. Практически мы предполагаем работать при давлении около 0,01 атмосферы, т.е. в условиях хорошего вакуума. Многократное обогащение газа при непрерывном процессе работы может быть осуществлено при помощи каскадной установки, состоящей из большого числа ступеней, соединенных последовательно. Расчет показывает, что для получения продукта, обогащенного до концентрации в 90% легким изотопом (такая концентрация достаточна для получения взрывчатого вещества), нужно соединить в каскад около 2000 таких ступеней. В проектируемой и частично изготовленной нами машине рассчитывается получить 75-100 г урана-235 в сутки. Установка будет состоять приблизительно из 80-100 «колонн», в каждой из которых будет смонтировано 20-25 ступеней. Общая площадь сеток (площадью сеток определяется производительность всей установки) составит около 8000 м 2 . Общая мощность, расходуемая компрессорами, составит 20 000 кВт.


К тому же хороший вакуум, что требует достаточно большой мощности компрессорного оборудования, и наличие большого количества аппаратуры контроля герметичности (что, в принципе в современном мире не проблема, но в статье речь шла о послевоенном времени где надо было все, сразу и быстро).

Применялся как одна из первых ступеней обогащения. В Манхэттенском проекте завод К-25 обогащал уран с 0.86% до 7%, далее сырье шло на калютроны. В СССР – многострадальный завод Д-1, а так же последовавшие за ним заводы Д-2 и Д-3, и так далее.

Так же под «диффузионным» методом разделения иногда понимают жидкостную диффузию – тоже, только в жидкой фазе. Физический принцип - более легкие молекулы собираются в более нагретой области. Обычно разделительная колонка состоит из двух коаксиально расположенных труб, в которых поддерживаются различные температуры. Разделяемая смесь вводится между ними. Перепад температур ΔТ приводит к возникновению конвективных вертикальных потоков, а между поверхностями труб создаётся диффузионный поток изотопов, что приводит к появлению разности концентрации изотопов в поперечном сечении колонки. Вследствие этого более лёгкие изотопы накапливаются у горячей поверхности внутренней трубы и движутся вверх. Термодиффузионный метод позволяет разделять изотопы как в газообразной, так и в жидкой фазе.

В Манхэттенском проекте это завод S-50 – он обогащал природный уран до 0.86%, т.е. всего в 1.2 раза увеличивал обогащение по пятому урану. В СССР работы по жидкостной диффузии велись Радиевым институтом в послевоенное время, но никакого развития это направление не получило.


Каскад машин газодифузионного разделения изотопов.
Подписи на патенте - Ф. Саймон, К. Фукс, Р. Пайерлс.

Аэродинамическая сепарация

Аэродинамическая сепарация это своего рода вариант центрифугирования, но вместо закручивания газа он завихряется в специальной форсунке. Вместо тысячи слов – см. рисунок, т.н. «сопло Беккера» для аэродинамического разделения изотопов урана (смесь водорода и гексафторида урана) при пониженном давлении. Гексафторид урана очень тяжелый газ и приводит к износу мелких деталей форсунок (см. масштаб), и может переходит в твёрдое состояние на участках повышенного давления (например на входе в форсунку), поэтому гексафторид разбавляют водородом. Понятно, что при 4% содержании сырья в газе, да еще и пониженном давлении эффективность такого способа не велика. Развивалась этот способ пытались в ЮАР и ФРГ.


Все что вам нужно знать о аэродинамической сепарации есть на этой картинке


Варианты форсунок

Газовое центрифугирование

Наверное каждый человек (а гик уж и подавно!) слышавший хоть раз атомную энергетику, бомбы и обогащение, в общих чертах знает что такое центрифуга, как она работает и что в конструировании таких приборов есть много сложностей, секретов и ноу-хау. Поэтому про газовое центрифугирование скажу буквально пару слов. Однако, чесно говоря, газовые центрифуги имеют очень богатую историю развития и заслуживают отдельной статьи.

Принцип работы – разделение за счет центробежных сил в зависимости от абсолютной разницы в массе. При вращении (до 1000 об/с, окружная скорость – 100 - 600 м/с) более тяжелые молекулы уходят на периферию, более легкие – в центре (у ротора). Этот метод на данный момент является самым продуктивным и дешевым (исходят из цены $/EPP).

Гугл изибилует схематичными картинками устройства центрифуги, я лишь приведу пару фотографий как выглядит собранный каскад. В таком помещении кстати говоря достаточно жарко – гексафоторид урана там находится далеко не при комнатной температуре, и весь такой каскад нужно еще и охлаждать.


Каскад центрифуг фирмы URENCO. Большие, метра под 3 в высоту.


Бывают и поменьше, около полуметра. Наши отечественные.


Для понимания масштабов, или что такое «цех от горизонта до горизонта».

Лазерное обогащение

Физический принцип лазерного обогащения в том, что атомные энергетические уровни различных изотопов незначительно отличаются.
Этот эффект может быть использован для разделения U-235 от U-238, как в атомарном - AVLIS, так и в молекулярном виде - МLIS.

В методе используются пары урана, и лазеры, которые точно настроены на определенную длину волны, возбуждая атомы именно 235-го урана. Далее ионизированные атомы удаляются из смеси электрическим или магнитным полем.

Технология очень простая, и, вобще говоря, не требует каких то супер-сложных механических устройств типа диффузионных сеток или центрифуг, одна есть и другая проблема.
В сентябре 2012 года компания Global Laser Enrichment LLC (GLE) – консорциум General Electric, Hitachi и Cameco – получила лицензию Комиссии по ядерному регулированию (NRC) США на строительство лазерного разделительного завода мощностью до 6 млн ЕРР на площадке действующего совместного предприятия GE, Toshiba и Hitachi по фабрикации топлива в Уилмингтоне, штат Северная Каролина. Планируемое обогащение - до 8%. Однако лицензирование приостановили - по причине проблем с распространением технологии. Современные технологии обогащения (диффузионная и центрифугирование) требуют специального оборудования, настолько специального, что, вобще говоря, при желании через мониторинг международных контрактов можно косвенно предположить, кто собирается «по тихому» (без ведома МАГАТЭ) обогащать уран или вести работы по этому направлению. И такой мониторинг действительно ведется. В случае, если лазерный метод обогащения докажет свою простоту и эффективность, работы по оружейному урану могут начать вести там, где это не очень нужно. Поэтому пока лазерный метод как то подминают.

К лазерным методам можно отнести так же и молекулярный метод, основанный на том, что на инфракрасных или ультрафиолетовых частотах происходит избирательное поглощение газом 235 UF 6 инфракрасного спектра, что в дальнейшем позволяет использовать метод диссоциации возбужденных молекул или химическое разделение.
Относительное содержание U-235 может быть увеличено на порядок уже в первой стадии. Таким образом, одного прохода достаточно, чтобы обеспечить обогащение урана, достаточное для ядерных реакторов.


Пояснения к «молекулярному» методу с химическим разделением.

Преимущества лазерного обогащения:

  • Потребление электроэнергии: в 20 раз менее, чем для диффузии.
  • Каскадность: число каскадов (от 0,7% до 3-5% по U-235) – менее 100, по сравнению с 150 000 центрифуг.
  • Стоимость завода – существенно меньше.
  • Экологичность: вместо гексафторида урана используется менее опасный металлический уран.
  • Потребность в природном уране – на 30% меньше.
  • На 30% меньше хвостохранилищ (хранилища отвала).

Сравнение показателей различных методов


Обогащение урана в России

В настоящее время в России действует четыре обогатительных комбината:

Результате природный уран разделяют на обогащенный уран и обедненный уран.

В природном уране содержится три изотопа урана: 238U (массовая доля 99,2745 %), 235U (доля 0,72 %) и 234U (доля 0,0055 %). Изотоп 238U является относительно стабильным изотопом, не способным к самостоятельной цепной ядерной реакции, в отличие от редкого 235U. настоящее время 235U является первичным делящимся материалом в цепочке технологий ядерных реакторов и ядерного оружия. Однако для многих применений доля изотопа 235U в природном уране мала и подготовка ядерного топлива обычно включает стадию обогащения урана.

  • 1 Причины обогащения
  • 2 Степени обогащения урана
  • 3 Технологии
  • 4 Производство обогащенного урана в мире
  • 5 См. также
  • 6 Примечания
  • 7 Ссылки

Причины обогащения

Цепная ядерная реакция подразумевает что хотя бы один нейтрон из образованных распадом атома урана будет захвачен другим атомом и, соответственно, вызовет его распад. первом приближении это означает что нейтрон должен «наткнуться» на атом 235U раньше чем покинет пределы реактора. Значит, конструкция с ураном должна быть достаточно компактной чтобы вероятность найти следующий атом урана для нейтрона была достаточно высока. Но по мере работы реактора 235U постепенно выгорает, что уменьшает вероятность встречи нейтрона и атома 235U, что вынуждает закладывать в реакторах определенный запас этой вероятности. Соответственно, низкая доля 235U в ядерном топливе вызывает необходимость в:

  • большем объёме реактора чтобы нейтрон дольше в нём находился;
  • бóльшую долю объёма реактора должно занимать топливо чтобы повысить вероятность столкновения нейтрона и атома урана;
  • чаще требуется перезагружать топливо на свежее чтобы сохранять заданную объемную плотность 235U в реакторе;
  • высокой доле ценного 235U в отработавшем топливе.

В процессе совершенствования ядерных технологий были найдены экономические и технологические оптимальные решения, требующие повышения содержания 235U в топливе, то есть обогащения урана.

В ядерном оружии задача обогащения практически такая же: требуется чтобы за предельно короткое время ядерного взрыва максимальное число атомов 235U нашли свой нейтрон, распались и выделили энергию. Для этого нужна предельно возможная объемная плотность атомов 235U, достижимая при предельном обогащении.

Степени обогащения урана

Природный уран с содержанием 235U 0,72 % находит применение в некоторых энергетических реакторах (например, в канадских CANDU), в реакторах-наработчиках плутония (например, А-1).

Уран с содержанием 235U свыше 20 % называют высокообогащенным (англ. Highly enriched uranium, HEU) или оружейным . На заре ядерной эры были построены несколько образцов ядерного оружия пушечной схемы на основе урана с обогащением около 90 %. Высокообогащенный уран может использоваться в термоядерном оружии в качестве тампера (обжимающей оболочки) термоядерного заряда. Кроме того, уран с высоким обогащением используется в энергетических ядерных реакторах с длительной топливной кампанией (то есть с редкими перезагрузками или вовсе без перезагрузки), например в реакторах космических аппаратов или корабельных реакторах.

В отвалах обогатительных производств остается обедненный уран с содержанием 235U 0,1…0,3 %. Он широко используется в качестве сердечников бронебойных снарядов артиллерийских орудий благодаря высокой плотности урана и дешевизне обедненного урана. будущем возможно использование обедненного урана в составе уран-плутониевого топлива для энергетических реакторов.

Технологии

Основная статья: Разделение изотопов

Известно много методов разделения изотопов. Большинство методов основано на разной массе атомов разных изотопов: 235-й немного легче 238-го из-за разницы в количестве нейтронов в ядре. Это проявляется в разной инерции атомов. Например, если заставить атомы двигаться по дуге то тяжёлые будут стремиться двигаться по большему радиусу чем лёгкие. На этом принципе построены электромагнитный и аэродинамический методы. электромагнитном методе ионы урана разгоняются в ускорителе элементарных частиц и закручиваются в магнитном поле. аэродинамическом методе газообразное соединение урана продувается через специальное сопло-улитку. Похожий принцип в газовом центрифугировании : газообразное соединение урана помещается в центрифугу, где инерция заставляет тяжёлые молекулы концентрироваться у стенки центрифуги. Термодиффузионный и газодиффузионный методы используют разницу в подвижности молекул: молекулы газа с лёгким изотопом урана более подвижны чем тяжёлые. Поэтому они легче проникают в мелкие поры специальных мембран при газодиффузионной технологии. При термодиффузионном методе менее подвижные молекулы концентрируются в более холодной нижней части разделительной колонны, вытесняя более подвижные в верхнюю горячую часть. Большинство методов разделения работают с газообразными соединениями урана, чаще всего с UF6.

Многие из методов пытались использовать для промышленного обогащения урана, однако в настоящее время практически все мощности по обогащению работают на основе газового центрифугирования. Наряду с центрифугированием в прошлом широко использовался газодиффузионный метод. На заре ядерной эры использовались электромагнитный, термодиффузии, аэродинамический методы. На сегодняшний день центрифугирование демонстрирует наилучшие экономические параметры обогащения урана. Однако ведутся исследования перспективных методов разделения, например, лазерное разделение изотопов.

Производство обогащенного урана в мире

Работы по разделению изотопов исчисляются в специальных единицах работы разделения (ЕРР, англ. Separative work unit, SWU). Мощности заводов по разделению изотопов урана в тысячах ЕРР в год согласно WNA Market Report с прогнозом развития.

страна Компания, Завод 2012 2013 2015 2020
Франция Areva: Georges Besse I и II 2500 5500 7000 8200
Германия, Голландия, Англия, URENCO: Gronau (Германия), Almelo (Голландия), Capenhurst (Англия) 12800 14200 14200 15700
Япония JNFL (англ.)русск., Rokkaasho 150 75 1050 1500
США USEC (англ.)русск.: Paducah & Piketon 5000 0 0 3800
США URENCO: New Mexico 2000 3500 5700 5700
США Areva: Idaho Falls 0 0 0 3300
США Global Laser Enrichment 0 0 0 3000
Россия ОАО ТВЭЛ (TENEX) 25000 26000 30000 37000
Китай CNNC (англ.)русск., Hanzhun & Lanzhou 1500 2200 3000 8000
Пакистан, Бразилия, Иран Разные 100 75 500 1000
Суммарное 49000 51550 61450 87200

См. также

  • Ядерная энергия
  • Обеднённый уран

Примечания

  1. Удешевление обогащения. Атомный эксперт. Обзор истории и технологий обогащения урана.

Ссылки

  • Мировой рынок ядерного топлива, Cambridge, 2013.
  • Глоссарий терминов // Minatom
  • Справка: обогащение урана
  • The Radioactive Boy Scout. Ken Silverstein. (перев. рус.)

обогащение урана, обогащение урана американский метод

Обогащение урана Информацию О

Содержание статьи

УРАНОВАЯ ПРОМЫШЛЕННОСТЬ. Уран – это основной энергоноситель ядерной энергетики, вырабатывающей около 20% мировой электроэнергии. Урановая промышленность охватывает все стадии производства урана, включая разведку месторождений, их разработку и обогащение руды. Переработку урана в топливо для реакторов можно рассматривать как естественную отрасль урановой промышленности.

Ресурсы.

Общемировые достаточно надежно разведанные ресурсы урана, который можно было бы выделить из руды по себестоимости не выше 100 долл. за килограмм, оцениваются приблизительно в 3,3 млрд. кг U 3 O 8 . Примерно 20% этого (ок. 0,7 млрд. кг U 3 O 8 , см . рисунок) приходится на Австралию, за которой следуют США (ок. 0,45 млрд. кг U 3 O 8). Значительными ресурсами для производства урана располагают ЮАР и Канада.

Урановое производство.

Основные этапы производства урана – это добыча руды подземным или открытым способом, обогащение (сортировка) руды и извлечение урана из руды выщелачиванием. На руднике урановую руду извлекают из горного массива буро-взрывным способом, раздробленную руду сортируют и размельчают, а затем переводят в раствор сильной кислоты (серной) или в щелочной раствор (карбоната натрия, что наиболее предпочтительно в случае карбонатных руд). Раствор, содержащий уран, отделяют от нерастворенных частиц, концентрируют и очищают сорбцией на ионообменных смолах или экстракцией органическими растворителями. Затем концентрат, обычно в форме оксида U 3 O 8 , называемого желтым кеком, осаждают из раствора, сушат и укладывают в стальные емкости вместимостью ок. 1000 л.

Для извлечения урана из пористых руд осадочного происхождения все чаще применяется метод выщелачивания на месте. По скважинам, пробуренным в рудном теле, непрерывно прогоняют щелочной или кислый раствор. Этот раствор с перешедшим в него ураном концентрируют и очищают, а затем из него осаждением получают желтый кек.

Переработка урана в ядерное топливо.

Концентрат природного урана – желтый кек – это исходный компонент ядерного топливного цикла. Для превращения природного урана в топливо, соответствующее требованиям ядерного реактора, нужны еще три этапа: преобразование в UF 6, обогащение урана и изготовление тепловыделяющих элементов (твэлов).

Преобразование в UF6.

Для преобразования оксида урана U 3 O 8 в гексафторид урана UF 6 желтый кек обычно восстанавливают безводным аммиаком до UO 2 , из которого затем с помощью плавиковой кислоты получают UF 4 . На последнем этапе, действуя на UF 4 чистым фтором, получают UF 6 – твердый продукт, возгоняющийся при комнатной температуре и нормальном давлении, а при повышенном давлении плавящийся. Пять крупнейших производителей урана (Канада, Россия, Нигер, Казахстан и Узбекистан) вместе могут давать 65 000 т UF 6 в год.

Обогащение урана.

На следующем этапе ядерного топливного цикла повышается содержание U-235 в UF 6 . Природный уран состоит из трех изотопов: U-238 (99,28%), U-235 (0,71%) и U-234 (0,01%). Для реакции деления в ядерном реакторе необходимо более высокое содержание изотопа U-235. Обогащение урана осуществляется двумя основными методами разделения изотопов: газодиффузионным методом и методом газового центрифугирования. (Энергия, затрачиваемая на обогащение урана, измеряется в единицах разделительной работы, ЕРР.)

При газодиффузионном методе твердый гексафторид урана UF 6 переводят понижением давления в газообразное состояние, а затем прокачивают по пористым трубкам из специального сплава, сквозь стенки которых газ может диффундировать. Поскольку масса атомов U-235 меньше, чем атомов U-238, они легче и быстрее диффундируют. В процессе диффузии газ обогащается изотопом U-235, а газ, прошедший по трубкам, обедняется. Обогащенный газ снова пропускают по трубкам, и процесс продолжается до тех пор, пока содержание изотопа U-235 в отборе не достигнет уровня (3–5%), необходимого для работы ядерного реактора. (Для оружейного урана требуется обогащение до уровня свыше 90% U-235.) В отходах обогащения остается лишь 0,2–0,3% изотопа U-235. Газодиффузионный метод характеризуется высокой энергоемкостью. Заводы, основанные на этом методе, имеются только в США, во Франции и в КНР.

В России, Великобритании, Германии, Нидерландах и Японии применяется метод центрифугирования, при котором газ UF 6 приводится в очень быстрое вращение. Благодаря различию в массе атомов, а следовательно, и в центробежных силах, действующих на атомы, газ вблизи оси вращения потока обогащается легким изотопом U-235. Обогащенный газ собирается и экстрагируется.

Изготовление твэлов.

Обогащенный UF 6 поступает на завод в 2,5-т стальных контейнерах. Из него гидролизом получают UO 2 F 2 , который затем обрабатывают гидроксидом аммония. Выпавший в осадок диуранат аммония отфильтровывают и обжигают, получая диоксид урана UO 2 , который прессуют и спекают в виде небольших керамических таблеток. Таблетки вкладывают в трубки из циркониевого сплава (циркалоя) и получают топливные стержни, т.н. тепловыделяющие элементы (твэлы), которые объединяют примерно по 200 штук в законченные топливные сборки, готовые для использования на АЭС.

Отработанное ядерное топливо сильно радиоактивно и требует особых мер предосторожности при хранении и удалении в отходы. В принципе его можно переработать, отделив продукты деления от остатков урана и плутония, которые повторно могут служить ядерным топливом. Но такая переработка дорого стоит и соответствующие коммерческие предприятия имеются лишь в некоторых странах, например во Франции и Великобритании.

Объем производства.

К середине 1980-х годов, когда надежды на быстрый рост ядерной энергетики не оправдались, объем производства урана резко упал. Строительство многих новых реакторов было приостановлено, а на действующих предприятиях стали накапливаться запасы уранового топлива. С распадом Советского Союза дополнительно увеличилось предложение урана на Западе.

В природном уране содержится три изотопа урана: 238 U (массовая доля 99,2745 %), 235 U (доля 0,72 %) и 234 U (доля 0,0055 %). Изотоп 238 U является относительно стабильным изотопом, не способным к самостоятельной цепной ядерной реакции , в отличие от редкого 235 U. В настоящее время 235 U является первичным делящимся материалом в цепочке технологий ядерных реакторов и ядерного оружия . Однако для многих применений доля изотопа 235 U в природном уране мала и подготовка ядерного топлива обычно включает стадию обогащения урана.

Причины обогащения

Цепная ядерная реакция подразумевает, что хотя бы один нейтрон из образованных распадом атома урана будет захвачен другим атомом и, соответственно, вызовет его распад. В первом приближении это означает что нейтрон должен «наткнуться» на атом 235 U раньше чем покинет пределы реактора. Значит, конструкция с ураном должна быть достаточно компактной чтобы вероятность найти следующий атом урана для нейтрона была достаточно высока. Но по мере работы реактора 235 U постепенно выгорает, что уменьшает вероятность встречи нейтрона и атома 235 U, что вынуждает закладывать в реакторах определённый запас этой вероятности. Соответственно, низкая доля 235 U в ядерном топливе вызывает необходимость в:

  • большем объёме реактора, чтобы нейтрон дольше в нём находился;
  • бóльшую долю объёма реактора должно занимать топливо, чтобы повысить вероятность столкновения нейтрона и атома урана;
  • чаще требуется перезагружать топливо на свежее, чтобы сохранять заданную объёмную плотность 235 U в реакторе;
  • высокой доле ценного 235 U в отработавшем топливе.

В процессе совершенствования ядерных технологий были найдены экономически и технологически оптимальные решения, требующие повышения содержания 235 U в топливе, то есть обогащения урана.

В ядерном оружии задача обогащения практически такая же: требуется чтобы за предельно короткое время ядерного взрыва максимальное число атомов 235 U нашли свой нейтрон, распались и выделили энергию. Для этого нужна предельно возможная объёмная плотность атомов 235 U, достижимая при предельном обогащении.

Степени обогащения урана

Природный уран с содержанием 235 U 0,72 % находит применение в некоторых энергетических реакторах (например, в канадских CANDU), в реакторах-наработчиках плутония (например, А-1).

Уран с содержанием 235 U до 20 % называют низкообогащённым (англ. Low enriched uranium, LEU ). Уран с обогащением 2-5 % в настоящее время широко используется в энергетических реакторах по всему миру. Уран с обогащением до 20 % используется в исследовательских и экспериментальных реакторах.

Уран с содержанием 235 U свыше 20 % называют высокообогащённым (англ. Highly enriched uranium, HEU ) или оружейным . На заре ядерной эры были построены несколько образцов ядерного оружия пушечной схемы на основе урана с обогащением около 90 %. Высокообогащённый уран может использоваться в термоядерном оружии в качестве тампера (обжимающей оболочки) термоядерного заряда. Кроме того, уран с высоким обогащением используется в энергетических ядерных реакторах с длительной топливной кампанией (то есть с редкими перезагрузками или вовсе без перезагрузки), например в реакторах космических аппаратов или корабельных реакторах.

В отвалах обогатительных производств остаётся обеднённый уран с содержанием 235 U 0,1-0,3 %. Он широко используется в качестве сердечников бронебойных снарядов артиллерийских орудий благодаря высокой плотности урана и дешевизне обеднённого урана. В будущем предполагается использование обеднённого урана в реакторах на быстрых нейтронах , где не поддерживающий цепную реакцию Уран-238 может трансмутировать в Плутоний-239 , поддерживающий цепную реакцию. Полученное MOX-топливо может быть использовано в традиционных энергетических реакторах на тепловых нейтронах .

Технологии

Многие из методов пытались использовать для промышленного обогащения урана, однако в настоящее время практически все мощности по обогащению работают на основе газового центрифугирования . Наряду с центрифугированием в прошлом широко использовался газодиффузионный метод. На заре ядерной эры использовались электромагнитный, термодиффузии, аэродинамический методы. На сегодняшний день центрифугирование демонстрирует наилучшие экономические параметры обогащения урана. Однако ведутся исследования перспективных методов разделения, например, лазерное разделение изотопов.

Производство обогащённого урана в мире

Работы по разделению изотопов исчисляются в специальных единицах работы разделения (ЕРР, англ. Separative work unit, SWU ). Мощности заводов по разделению изотопов урана в тысячах ЕРР в год согласно WNA Market Report с прогнозом развития.

Страна Компания, завод 2012 2013 2015 2020
Россия