Раздел ii основы динамики судна. В россии показали пневматический активный успокоитель качки Успокоители качки на судах снабжения буровых установок

Успокоитель качки корабля

устройство для уменьшения размаха (амплитуды) бортовой качки с целью снижения ее неблагоприятных последствий. Подразделяются на пассивные и активные. Пассивными успокоителями качки являются скуловые кили, успокоительные цистерны. К активным успокоителям качки относятся успокоительные цистерны с принудительной перекачкой воды, гироуспокоители качки и гидродинамические стабилизаторы.

  • - специальное устройство, действие которого основано иа использовании свойств гироскопа, позволяющее уменьшать амплитуду бортовой качки...

    Словарь военных терминов

  • - устройства для уменьшения размаха бортовой качки корабля, предотвращающие её неблагоприятные последствия. Подразделяются на активные и пассивные...

    Словарь военных терминов

  • - часть измерит...
  • - устройство для умерения бортовой качки судна на волнении. Действие У. к. осн. на создании сил, препятствующих крену судна при качке...

    Большой энциклопедический политехнический словарь

  • - служит для умерения боковой качки...

    Морской словарь

  • - успокоитель качки на основе гироскопа, ось вращения которого расположена вертикально в диаметральной плоскости судна...

    Морской словарь

  • - время его полного размаха из одного крайнего положения в другое и обратно...

    Морской словарь

  • - устройство для уменьшения качки судна...

    Большая Советская энциклопедия

  • - ́ мн. разг. Молодые люди, имеющие атлетическое сложение с хорошо развитой и рельефно выраженной мускулатурой в результате качания, занятия бодибилдингом...

    Толковый словарь Ефремовой

  • Толковый словарь Ефремовой

  • - успокои́тель I м. Тот, кто успокаивает кого-либо или что-либо. II м. Приспособление для гашения колебаний подвижной части измерительного прибора...

    Толковый словарь Ефремовой

  • - ...
  • - ...

    Орфографический словарь-справочник

  • - успоко"...

    Русский орфографический словарь

  • - 1. успокои́тель, успокои́тели, успокои́теля, успокои́телей, успокои́телю, успокои́телям, успокои́тель, успокои́тели, успокои́телем, успокои́телями, успокои́теле, успокои́телях 2...

    Формы слова

  • - угомонитель,...

    Словарь синонимов

"Успокоитель качки корабля" в книгах

С КОРАБЛЯ - НА БАЛ

Из книги Моя война. Чеченский дневник окопного генерала автора Трошев Геннадий

С КОРАБЛЯ - НА БАЛ В сентябре 94-го я находился в длительной командировке в Приднестровье - в составе комиссии по урегулированию конфликта. Незадолго до этого 1-я гвардейская танковая армия, где я был первым заместителем командующего, покинула территорию Германии и

Устал от качки

Из книги Мои путешествия. Следующие 10 лет автора Конюхов Фёдор Филиппович

Устал от качки 25 ноября 2002 года13°14’ с. ш., 52°19’ з. д.10:00. Большая радость. Только закончил читать утреннюю молитву Господу Богу, как услышал писк: «Фить-фить». Выглянул, а над головой две птички – тропические белохвосты. Они прилетели с Барбадоса, до которого еще

С корабля на бал

Из книги Чеченский излом. Дневники и воспоминания автора Трошев Геннадий Николаевич

С корабля на бал В сентябре 1994-го я находился в длительной командировке в Приднестровье - в составе комиссии по урегулированию конфликта. Незадолго до этого танковая армия, где я был первым заместителем командующего, покинула территорию Германии и передислоцировалась в

С корабля на бал

Из книги Земля и небо. Записки авиаконструктора автора Адлер Евгений Георгиевич

С корабля на бал Вызвать меня из Крыма для АэСа было не трудно, поскольку ВЛПШ являлась учреждением ЦС Осоавиахима, а он сам был его членом. Итак, наша группа отправилась в Ленинград и обосновалась в гостинице «Знаменская». Как «б-о-льшой» специалист по АИР-6, я оказался

С корабля на бал

Из книги автора

С корабля на бал Кончилась война. Героический морячок, преисполненный самых радужных надежд на счастливое будущее, вернулся в родную Москву. Впереди его ждала спокойная мирная жизнь. В победном 45-м Георгию Юматову едва исполнилось девятнадцать. Он оказался перед выбором

С корабля, но не на бал…

Из книги автора

С корабля, но не на бал… Старший механик «Хасана» А. Устинов:«22 июня 1941 года в 6 часов утра ко мне зашли соседи - капитан сошвартованного борт о борт с нашим пароходом «Эльтон» И. Филиппов и старший штурман Ю. Климченко. Они тайком от немецких патрулей пролезли через леера и

Успокоитель

Из книги Большая энциклопедия техники автора Коллектив авторов

Успокоитель Успокоитель – это элемент механической системы стрелочных электроизмерительных приборов, предназначенных для возвращения стрелки на нуль шкалы. Является составной частью специального измерительного механизма, которая обеспечивает постепенное затухание

Раздел первый. Устройство корабля и оборудование верхней палубы Глава 1. Устройство надводного корабля и подводной лодки 1.1. Устройство надводного корабля

автора Автор неизвестен

Раздел первый. Устройство корабля и оборудование верхней палубы Глава 1. Устройство надводного корабля и подводной лодки 1.1. Устройство надводного корабля Военный корабль – сложное самоходное инженерное сооружение, носящее присвоенный ему военно-морской флаг своего

Раздел третий. Содержание корабля Глава 8. Корабельные работы 8.1. Осмотры корпуса корабля

Из книги Справочник по морской практике автора Автор неизвестен

Раздел третий. Содержание корабля Глава 8. Корабельные работы 8.1. Осмотры корпуса корабля Все части корпуса корабля и корабельные помещения распределяются в заведование определенных лиц согласно расписанию по заведованиям, которые обязаны детально знать свое

Успокоитель качки

Из книги Большая Советская Энциклопедия (УС) автора БСЭ

С корабля на бал

Из книги Энциклопедический словарь крылатых слов и выражений автора Серов Вадим Васильевич

С корабля на бал Из романа в стихах «Евгений Онегин» (1823-1831) А. С. Пушкина (1799-1837) (гл. 8, строфа 13): И путешествия ему, Как всё на свете, надоели, Он возвратился и попал, Как Чацкий, с корабля на

5. Приемы для уменьшения качки

Из книги Аварии морских судов и их предупреждение автора Луговой С П

5. Приемы для уменьшения качки С целью избежать опасного положения при наблюдающихся возрастающих углах крена при боковой качке достаточно бывает изменить несколько курс в ту или другую сторону или уменьшить скорость судна; иногда приходится делать то и другое. В связи с

ДЕЛО КАЧКИ

Из книги Русские судебные ораторы в известных уголовных процессах XIX века автора Потапчук И. В.

Ботаники или качки?

Из книги До смерти здоров. Результат исследования основных идей о здоровом образе жизни автора Джейкобс Эй Джей

Ботаники или качки? Мне всегда нравились анекдоты про умников и качков. Читая Библию, я увидел историю Давида и Голиафа как приквел к «Мести полудурков». С одной стороны – огромный, тупой, накачанный Голиаф, а с другой – щуплый, но сообразительный Давид с пращой. Все

«КАЧКИ» - ТУПЫЕ

Из книги Шоу-бизнес автора Панасов И В

Тема 2.1 Качка.


Успокоители качки.

Пассивные успокоители. К числу пассивных успокоителей качки относятся скуловые кили и пассивные успокоительные цистерны .

Скуловые кили являются наиболее простым и эффективным средством умерения бортовой качки и потому находят самое широкое применение. стабилизирующее действие скуловых килей обусловлено ростом демпфирующего момента, создаваемого дополнительными силами сопротивления качке, которые наиболее ощутимы при резонансе. Кроме того, при качке на килях правого и левого бортов, как на крыльях, возникают подъемные силы противоположного направления, создающие дополнительный стабилизирующий момент.

В конструктивном отношении скуловые кили (Рис.51) представляют собой пластины, установленные вдоль судна в районе скулы. Кили располагают так, чтобы они не выходили за габариты судна. Суммарная площадь килей на обоих бортах составляет от 3% до 6% произведения LB. Эффективность бортовых килей в большой степени зависит от удачно выбранного отношения их ширины к протяженности. Ширина Рис.51 Скуловые кили. килей колеблется в пределах от 200 до 1200 мм. В среднем

отношение ширины килей к ширине судна составляет 0,03 – 0,05, а их длина к длине судна – 0,25 – 0,60. Установка килей большей площади приводит к уменьшению амплитуды резонансной качки на 45 – 50%. В условиях нерегулярного волнения бортовые кили нормальной площади уменьшают амплитуду бортовой качки в среднем на 20 – 30%.

Пассивные успокоительные цистерны. Пассивные успокоительные цистерны могут быть двух типов: закрытого , не сообщающегося с забортной водой (цистерны первого рода) (Рис. 52а), и открытого , сообщающегося с забортной водой (цистерны второго рода) (Рис. 52б). Они представляют собой две плоские бортовые цистерны, расположенные поперек судна. Цистерны на половину заполнены водой (у цистерн 1 рода – иногда топливом) и соединены каналами. Цистерны 1 рода имеют два канала – водяной (внизу) и воздушный (вверху). снабженный клапаном. У цистерн второго рода водяной соединительный канал отсутствует, т.к. в бортовых стенках имеются отверстия, которые сообщаются с забортной водой.

Принцип действия таких цистерн основан на создании стабилизирующего момента за счет перемещения массы жидкости из одного бортового отсека в другой. Перемещение жидкости вызывается качкой судна и не требуют дополнительных энергетических Рис. 52 Пассивные успокоительные цистерны: затрат. Подбором элементов цистерн, 1 – бортовые цистерны; 2 – воздушный канал размеров каналов и регулировкой 3 – клапан; 4 – водяной канал. клапана можно добиться равенства

периода колебаний жидкости в цистернах и периода собственных колебаний судна. Вследствие этого при резонансной качке возникает явление двойного резонанса: судно отстает по фазе от колебаний волны на 90 0 , а жидкость в цистернах – на 90 0 от колебаний судна. Суммарное отставание по фазе составляет 180 0 , цистерны работают в противофазе с водой (Рис.53), а возникающий стабилизирующий момент оказывается противоположным по знаку возмущающему моменту и противодействует наклонению судна.

Пассивные успокоительные цистерны наиболее эффективны при резонансной качке и менее эффективны на нерезонансных волнах. При некоторых условиях и режимах нерегулярного волнения такие успокоители могут привести к увеличению амплитуд качки.

Рис. 53 Последовательное положение воды в успокоительных цистернах при резонансной

качке судна.

Наличие свободной поверхности жидкости в цистернах также неблагоприятно влияет на остойчивость судна. Вследствие указанных причин пассивные цистерны в настоящее время практически не применяются.

Активные успокоители. К активным успокоителям качки относятсябортовые управляемые рули, активные успокоительные цистерны и гироскопические успокоители – стабилизаторы .

Бортовые управляемые рули являются весьма эффективным средством умерения

бортовой качки и получили широкое распространение на транспортных и особенно на пассажирских судах. Они представляют собой крылья малого удлинения, которые устанавливаются по бортам судна в районе скуловой части. Крылья размещены на специальных приводах, обеспечивающих изменение углов атаки по определенному закону, выдвижение их из корпуса и уборку внутрь корпуса(Рис. 54). Размеры и площадь управляемых рулей определяют путем соответствующего расчета в зависимости от наименьшей скорости судна, при которой предлагают их использовать.

Принцип действия бортовых управляемых рулей основан на возникновении стабилизирующего момента, противодействующего качке, путем надлежащей перекладки рулей. Стабилизирующий момент создается подъемными силами, образующимися на рулях правого и левого бортов при их обтекании потоком.

При положении, когда судно кренится с левого Рис. 54 Управляемые бортовые рули. борта на правый, а рули переложены так, что

хвостовая часть руля правого борта опущена вниз, а хвостовая часть левого борта поднята кверху, то в таком положении на руле правого борта возникает подъемная сила, направленная вверх, а на руле левого борта – подъемная сила, направленная вниз. Благодаря этому создается момент, противодействующий размаху качки.

Управление приводами рулей осуществляется комплексом специальных автоматических приборов, которые обеспечивают непрерывное измерение гироскопическими датчиками параметров качки судна (угла крена, угловой скорости и углового ускорения), вычисление подъемной силы и угла атаки руля и последующую подачу

команд на гидравлический привод, который обеспечивает необходимую перекладку рулей. Пост управления всей системой находится на мостике судна, а блоки силовых и исполнительных механизмов – в непосредственной близости от рулей в машинном отделении.

Эффективность работы бортовых управляемых рулей зависит от скорости судна, поскольку силы, создаваемые каждым рулем, пропорциональны квадрату скорости набегающего потока. Практика показала, что целесообразно применять бортовые рули при скоростях, превышающих 10 – 15 уз.

Вопросы для самоконтроля:

1.Для чего на судне устанавливают успокоители качки?

2.На какие виды делятся успокоители качки?

3.Что представляют собой скуловые кили и их принцип действия?

4.Конструкция и принцип действия пассивных успокоительных цистерн?

5.Какие средства относятся к активным успокоителям качки?


6.Что представляют собой бортовые управляемые рули и их принцип действия?


Тема 2.2. Ходкость судна

2.2.1 типы судовых движителей и принцип их работы.

На морских судах чаще всего используют винты фиксированного шага (ВФШ) или виты регулируемого шага (ВРШ).

Гребной винт (ВФШ) представляет собой систему лопастей (от 2 до 8), каждая из которых является участком винтовой поверхности. Поверхность лопастей, обращенная в нос, называется засасывающей,. Поверхность, обращенная в корму – нагнетающей . Передняя кромка лопастей называется входящей, задняя – выходящей. ВФШ бывают цельнолитые и со съемными лопастями. Они делятся на винты левого и правого вращения. Винт правого вращения на переднем ходу, если смотреть с кормы, вращается по часовой стрелке, винт левого вращения – наоборот.

Сила упора, создаваемая винтом при его вращении с заданной частотой, зависит от его основных геометрических характеристик,

1. D В диаметр винта - диаметр окружности, описываемой наиболее удаленными точками лопастей (до 5 метров);

2. H геометрический шаг винта – линейное расстояние по оси винта, которое проходила бы ступица за один полный оборот при вращении в плотной среде. (величина шагового отношения H/D колеблется 0.8 – 1.8)

3. Θ дисковое отношение Θ= А/А d - для тихоходных судов ≈0.35

для быстроходных ≈ 1.2

А – суммарная площадь спрямленной поверхности всех лопастей винта;

А d – площадь круга, ометаемого гребным винтом при его вращении.

4. Z число лопастей.

а так же от скорости самого судна.

Существенное влияние на силу упора винта оказывает взаимодействие винта с корпусом судна. Силу упора без учета такого взаимодействия называют упором изолированного винта. С учетом такого взаимодействия – полезным упором или тягой . Для ВФШ изменение направления упора достигается реверсированием двигателя. ВФШ имеет максимальный коэффициент полезного действия только при одном режиме движения (как правило, полный передний ход).

В отличии от гребных винтов фиксированного шага, винты регулируемого шага (ВРШ) имеют в ступице приводной механизм, с помощью которого осуществляется разворот лопастей от положения «ППХ» до положения «ПЗХ». Таким образом, без изменения направления вращения ГД, осуществляется изменение не только величины, но и направление упора винта. ВРШ могут быть трехлопастными и четырехлопастными. В последнем случае лопасти располагаются по парно и смещены вдоль оси винта (ВРШ типа «тендем»). Угол разворота лопастей при переходе с ППХ на ПЗХ составляет 40 – 50 0 . Время разворота лопастей ВРШ составляет 10 – 15 сек.. Использование ВРШ позволяет получить полную мощность ГД на режимах, отличных от расчетных, обеспечивает увеличение скорости судна и экономичность работы его двигательной установки.. ВРШ развивает значительно большую тягу на малых ходах и на 40 – 50% сокращает время и длину тормозного пути. Установка ВРШ позволяет осуществлять дистанционное управление судном и использовать на реверсивные двигатели, что значительно повышает их моторесурс. К недостаткам ВРШ следует отнести сложность конструкции как самого винта, так и валопровода, их большую, по сравнению с ВФШ, чувствительность к ударным нагрузкам.

Вопросы для самоконтроля:

12. Какие типы движителей используются на морских судах?

13. Что представляет собой гребной винт (ВФШ)?

14. От чего зависит сила упора, создаваемая ВФШ при его вращении с заданной частотой?

15. Что собой представляет и как осуществляется разворот регулируемого винта (ВРШ)?


Тема 2.3. Управляемость.

2.3.2 Крен судна на циркуляции .

Если на судне, идущем прямым курсом, внезапно переложить руль, то в первый момент после начала перекладки траектория движения судна искривится в направлении. обратном направлению перекладки руля. В этот момент на судно действуют следующие силы (Рис.55а):

Рис. 55 а – схема сил, накреняющих б – схема сил, накреняющих судно

судно после начала перекладки руля. в период установившейся циркуляции.

Р у – поперечная составляющая сил, действующих на руль;

R y – поперечная составляющая сил, действующих на погруженную часть корпуса судна;

F ц – поперечная составляющая центробежных сил инерции судна, линия действия этой

силы направлена в сторону поворота судна;

Сила Р у приложена в центре давления руля, возвышение которого над основной плоскостью определяется аппликатой z′ d ; сила R y приложена на высоте z d , а сила F ц – в центре тяжести судна, определяемом аппликатой z g .


Момент центробежной силы F ц вызывает небольшой крен на тот борт, на который переложен руль (моментом силы R y пренебрегаем в виду малым действием этой силы в начальной стадии циркуляции). Этот крен усиливается моментом силы Р у , действующей на руль.


Итак, в первый момент после перекладки руля судно будет крениться на тот борт, на который переложен руль, т.е. внутрь циркуляции.


По мере изменения кривизны траектории центробежная сила уменьшается, а затем меняет знак, т.е. изменяет направление действия на противоположное (Рис.55б). Одновременно происходит нарастание момента от силы R y вследствие увеличения угла дрейфа и уменьшения момента от силы Р у из – за снижения скорости судна. В результате изменения характера действия указанных сил и моментов судно сначала выпрямляется, а затем начинает крениться в сторону, обратную направлению перекладки руля, причем наклонение судна оказывается тем больше, чем больше был угол крена в сторону перекладки руля. Изменение направления крена носит динамический характер.


Максимальное наклонение в сторону, обратную направлению перекладки руля, называют динамическим углом крена судна на циркуляции .


При дальнейшем движении судна угол крена уменьшается. Судно делает одно – два колебания, и после того как элементы движения устанавливаются, угол крена приобретает некоторое постоянное значение на установившейся циркуляции. Этот угол совпадает по знаку с динамическим углом крена, но последний, как правило, превышает угол крена на установившейся циркуляции в 1,5 – 2,0 раза.


Морской Регистр в действующих «Правилах классификации и постройки морских судов» предписывает определять кренящий момент на циркуляции по формуле:

m кр = 0,238 (z g ) (2.3)

где: масса судна с учетом присоединенной массы воды. участвующей в движении, т;


Скорость судна при выходе на циркуляцию, равная 80% скорости полного хода;


Длина судна.


Отсюда после соответствующих преобразований получим формулу для определения


угла крена на установившейся циркуляции:

θ 0 1,4 (z g ) (2.3.1)

Выражение (2.3.1), представляющее известную формулу Г.А. Фирсова, показывает, что угол крена, возрастающий пропорционально квадрату скорости при выходе на циркуляцию, обратно пропорционален метацентрической высоте h .


Расчеты дают хорошие результаты для транспортных морских судов, диаметр циркуляции которых обычно не превышает пяти длин судна при максимальном угле перекладки руля.


Согласно «Правилам классификации и постройки морских судов» морского Регистра», угол крена пассажирских судов от совместного действия кренящих моментов, возникших в результате скопления пассажиров на одном борту и действия внешних сил на установившейся циркуляции, не должен превышать 3 / 4 угла заливания или угла, при котором палуба надводного борта входит в воду или скула выходит из воды – смотря по тому, какой угол меньше; во всяком случае угол крена не должен превышать 12 0 .


Вопросы для самоконтроля:


1. Какие силы действуют на судно при перекладке руля на циркуляции?


2. Как действуют силы, накреняющие судно после начала перекладки руля и в период


установившейся циркуляции?


3. Как определяется кренящий момент на циркуляции, предписанный Регистром судоходства?


4. Как определяется угол крена на установившейся циркуляции?


5.Требования Регистра судоходства о максимальной величине угла крена у пассажирских судов?


ЛИТЕРАТУРА:

1. Ф.Н. Белан, А.М. Чудновский.Основы теории судна. – Л: Судостроение, 1978

2. И.И.Бендус. Теория и устройство судна.Часть 1.2-е изд. перераб.и доп.-Керчь.:КГМТУ, 2006

3. В.Д. Кулагин. Теория и устройство промысловых судов.- Л.; Судостроение, 19861. Л.Р. Аксюткин. Контроль остойчивости морских судов.- Одесса:Фенікс,2003

4. А.М. Горячов,Е.М. Подругин. Устройство и основы теории морских судов.- Л.;Судостроение,1981

5. Судовые документи: БМРТ « Николай Островский » , РТМА « Прометей »

6. В.Л. Фукельман. Основы теории корабля.- Л.;Судостроение,1977


ПРИЛОЖЕНИЕ I.

Понятие об остойчивости судна

При плавании в море на суда постоянно воздействуют различные кренящие нагрузки и в первую очередь ветер и волнение. Каким же образом может сравнитель­но небольшое судно противостоять шквальному ветру и обрушивающимся на палубу волнам, накреняясь то на правый, то на левый борт, но не опрокидываясь? Ответ па эти вопросы дает учение об остойчивости.

Остойчивостью называется способность судна, выве­денного из положения равновесия воздействием внеш­них кренящих нагрузок, вновь возвращаться в первона­чальное положение после прекращения этого воздейст­вия.

Остойчивость - одно из основных мореходных ка­честв, сохранение и поддержание ее является важней­шей задачей экипажа судна.

Термин «остойчивость» произошел от понятия об устойчивости равновесия тел, однако он имеет более ши­рокий смысл. При рассмотрении устойчивости обычно имеют в виду только малые отклонения от положения равновесия, а при рассмотрении остойчивости судна - как малые, так и большие. Отклонение судна от равно­весного положения в поперечной плоскости называется креном, в продольной - дифферентом.

Различают остойчивость при малых наклонениях (начальную) и остойчивость на больших углах крена. Выделение начальной остойчивости в самостоятельный раздел позволяет ввести ряд допущений, значительно упрощающих математические зависимости при ре­шении различных практических задач. Формулы началь­ной остойчивости могут быть применены до углов крена, соответствующих входу кромки палубы в воду в том случае, если скула не выходит из воды. Эти углы для обычных судов составляют 8-12° и более. Формулы начальной остойчивости следует рассматривать как частный случай зависимостей, относящихся к остойчи­вости на больших углах крена.

При рассмотрении остойчивости подразумевается, что судно наклоняется под действием пары сил; величи­на силы поддержания не изменяется. При этом объем подводной части сохраняется постоянным, а меняется только ее форма. Такие наклонения и соответствующие им ватерлинии, отсекающие одинаковые объемы, назы­ваются равнообъсмными. В задачах о начальной остой­чивости равнообъемные ватерлинии проводят через центр тяжести исходной ватерлинии.

Специальные устройства, устанавливаемые на судах для умерения качки. Применяются свыше 100 лет и весьма разнообразны по принципу действия и конструкции. У. К. классифицируют по направлению действия стабилизирующего момента, по природе сил, создающих этот момент, по принципу управления. По 1-му признаку различают успокоители бортовой и продольной качки судна. Первые получили весьма широкое распространение. По 2-му признаку У. К. разбивают на 3 типа: гравитационные, гироскопические и гидродинамические. У гравитационных У. К. стабилизирующий момент создается перемещением внутри судна твердого тела или жидкости. В последнем случае У. К. выполняются в виде успокоительных цистерн разных типов. Наиболее часто применяются закрытые цистерны, состоящие из 2 бортовых секций, соединенных водыми и воздушными каналами. За рубежом широкое распространение получили цистерны типа "Флюм", характерной особенностью которых является соединительный канал, имеющий ту же высоту, что и бортовые секции. Если водный и воздушный каналы отсутствуют, а бортовые ветви сообщаются между собой через забортную воду и атмосферу, цистерны называются открытыми. Гироскопический У. К. состоит из тяжелого диска (гироскопа), вращающегося с большой скоростью вокруг оси, соединенной с рамой. Ось качаний рамы расположена горизонтально в поперечной плоскости судна и специальными цапфами соединена с его корпусом. При качке судна и вращении гироскопа возникает сложное движение рамы - прецессия, приводящая к появлению в цапфах реакций, создающих стабилизирующий момент. В настоящее время У. К. этого типа используются только для местной стабилизации различных установок на судах. Гидродинамические У. К. представляют собой специальные выступающие части (пластины или крылья), устанавливаемые на корпусе судна. Для успокоения бортовой качки применяются скуловые кили и бортовые управляемые рули. Последние могут быть неразрезными и разрезными, неубирающимися, втягивающимися внутрь судна, заваливающимися вдоль корпуса. Скуловые кили создают стабилизирующий момент за счет разности давлений на верхних и нижних поверхностях при обтекании киля в поперечной плоскости, а бортовые рули - благодаря возникающей на них подъемной силе, пропорциональной квадрату скорости судна. Поэтому бортовые рули непригодны для судов, требующих умерения качки в дрейфе или при малых скоростях движения, тогда как скуловые кили в этих условиях обладают максимальной эффективностью. Гидродинамичные У. К. в виде носовых неподвижных килей или крыльев могут использоваться и для умерения продольной качки, но они не получили широкого распространения из-за сравнительно невысокой эффективности и возникающей при их установке вибрации носовой оконечности судна. По 3-му признаку У. К. делятся на активные, пассивные и частично активизированные. Первые снабжены приводом, обеспечивающим принудительное изменение стабилизирующего момента в соответствии с сигналом, вырабатываемым специальной системой управления. К этому типу относятся бортовые управляемые рули. Активные успокоительные цистерны на современных судах не применяются, т. к. принудительная перекачка жидкости требует слишком больших энергетических затрат. Пассивные У. К. не имеют приводов и систем управления; к ним относятся скуловые кили, носовые кили и крылья, а также большая часть успокоительных цистерн. Применяются и частично активизированные цистерны, управляемые специальными клапанами, перекрывающими водный и воздушный каналы.

§ 12. Мореходные качества судов. Часть 2

Степень обеспечения непотопляемости судна зависит от его назначения. Так, на гражданских судах количество переборок и их размещение определяются удобством погрузки грузов, надежностью их крепления и возможностью работы с ними в трюме, а также тем условием, чтобы судовые машины и механизмы свободно размещались в отсеках и их было бы удобно обслуживать. С другой стороны, необходимо выполнение Норм Регистра СССР, согласно которым на основании Международной конвенции по спасению человеческих жизней на море грузовые суда при затоплении одного любого отсека, а пассажирские суда - при затоплении двух любых и даже смежных отсеков должны оставаться на плаву и сохранять не менее 75 мм высоты надводного борта от действующей ватерлинии до бортовой линии палубы переборок в любом положении судна (рис. 18).

Рис. 18. Минимальная высота надводного борта судна, имеющего дифферент.


Палубой переборок или палубой непотопляемости называется палуба, до которой доводят по высоте поперечные водонепроницаемые переборки.

На судах, имеющих и продольные непроницаемые переборки (на пассажирских судах и кораблях ВМС), в случае получения пробоины в подводной части борта и затопления бортовых отсеков образуются одновременно дифферентующий и кренящий моменты в сторону поврежденного борта. Это должно быть принято во внимание при выборе расположения продольных и поперечных переборок на судне.

Деление судна на отсеки должно быть таким, чтобы при бортовой пробоине плавучесть судна исчерпывалась ранее его остойчивости: судно должно тонуть без опрокидывания.

Для спрямления судна, имеющего крен и дифферент, полученные при затоплении отсеков, а также для восстановления уменьшающейся при этом остойчивости, производят принудительное контрзатопление заранее подобранных отсеков с одинаковыми по величине, но с обратными по значению моментами. Например, если судно от пробоины получило крен на левый борт и дифферент на нос, то для его спрямления необходимо затопить кормо- вой отсек по правому борту с равным моментом. Спрямленное судно, естественно, получит дополнительную осадку, но с восстановленной остойчивостью будет продолжать сохранять свои мореходные качества (а корабль -и боевые качества, т. е. производить маневрирование и стрельбу из орудий, запуск реактивных снарядов).

Этот принцип контрзатопления отсеков судна впервые в мире, еще в 1875 г., был предложен выдающимся русским ученым и моряком С. О. Макаровым. В 1903 г. эта идея была использована для практического применения на боевых кораблях молодым тогда ученым, офицером, впоследствии выдающимся советским кораблестроителем, академиком А. Н. Крыловым. Им были предложены специальные таблицы, названные таблицам и непотопляемости , по которым для всех отсеков на корабле были заранее рассчитаны кренящие и дифферентующие моменты, возникающие при затоплении одного или группы отсеков, и заранее определены моменты и указаны отсеки, которые в этом случае необходимо затопить для спрямления корабля. Пользуясь таблицами, можно в сложной боевой обстановке быстро выровнять корабль, получивший пробоину, и восстановить его утраченные боевые качества. Таблицы непотопляемости в настоящее время должны быть составлены для каждого корабля.

В дальнейшем трудами академика Ю. А. Шиманского, профессора В. Г. Власова и других советских ученых наука о непотопляемости корабля получила такое развитие, при котором практически исключается гибель корабля от потери остойчивости при боевом повреждении корпуса.

Качка судна - колебательные движения, которые судно совершает около положения его равновесия. Различают три вида качки судов:

А) вертикальную - колебания судна в вертикальной плоскости в виде периодических поступательных перемещений;

Б) бортовую (или боковую)-колебания судна в плоскости шпангоутов в виде угловых перемещений;

В) килевую (или продольную) качку - колебания судна в диаметральной плоскости также в виде угловых перемещений. При плавании судна на взволнованной поверхности воды часто все три вида качки возникают одновременно или в различных комбинациях. Существенное влияние на все виды качки судна оказывает направление его движения по отношению к бегу волны. Качка судна вредно отражается на его эксплуатационных и мореходных качествах.

Перечислим вредные последствия качки:

А) периодический подъем и зарывание в волну оконечностей судна, вызывающие дополнительное сопротивление движению и выход из воды гребного винта, что приводит к потере его упора и снижению скорости хода, увеличению расхода топлива, заливаемости палубы и ухудшению условий обитаемости судна;

Б) создание таких условий, которые могут привести к опрокидыванию судна из-за потери им поперечной остойчивости;

В) ухудшение условий эксплуатации машин и механизмов, а также дополнительные нагрузки на прочные связи корпуса от удара волн и действия сил инерции, возникающих при качке;

Г) снижение эффективности артиллерийской или торпедной стрельбы на кораблях, затруднение работы ракетных установок;

Д) вредное физиологическое воздействие на людей (заболевание морской болезнью).

Принято различать два вида колебаний судна на качке: свободные (на тихой воде), которые происходят по инерции после прекращения сил, вызвавших их, и вынужденные , которые вызываются внешними периодически приложенными силами, например морским волнением.


Рис. 19. Характеристики качки: а - амплитуда; б - размах; в - период качки.


Основной причиной качки судна является одновременное действие на него волн, сил плавучести и остойчивости. Основными характеристиками качки как периодического колебательного движения судна являются: амплитуда, размах и период качки (рис. 19).

Амплитудой качки называется наибольшее отклонение судна от исходного положения, измеренное в градусах.

Размах качки - сумма двух последовательных амплитуд (наклонение судна на оба борта).

Период качки -время между двумя последовательными наклонениями или время, в течение которого судно совершает полный цикл колебаний, возвращаясь к тому положению, при котором начался отсчет.

Период качки судна оказывает влияние на характер качки: при большом периоде качка совершается плавно, наоборот, при малом периоде качка происходит порывисто, вызывая тяжелые последствия.

Период (в секундах) свободной бортовой качки вычисляется по следующей формуле:


где k - коэффициент, зависящий от типа судна; его величина лежит в пределах 0,74/0,80;

В - расчетная ширина судна по действующую ватерлинию, м;

H 0 - начальная поперечная метацентрическая высота, м.

Из приведенного значения видно, что судно, обладающее большой остойчивостью, имеет порывистую качку, существенно влияющую на его эксплуатацию.

Период (в секундах) свободной вертикальной качки на тихой Rone насчитывается по приближенной формуле


а килевой качки - по формуле


где Т 0 - осадка судна, м.

При плавании судна на взволнованной воде, поскольку судно увлекается движением воды и до некоторой степени является поверхностной частицей, участвующей в орбитальном движении, равнодействующая приложенных к судну сил веса, сил плавучести и сил инерции направлена по нормали к склону воды. Изменение профиля волны непрерывно отражается на форме подводного объема судна и его величине, что приводит к вынужденным колебаниям судна.

Следовательно, характер вынужденных колебаний судна зависит от профиля волны, а их период всегда равен периоду волны. Для уменьшения качки судна принимают ряд мер, условно разделяемых на общие и специальные. К общим мерам относится рациональный выбор формы теоретического чертежа судна , а к специальным- установка конструкций - успокоителей качки , создающих моменты, противодействующие качке судна.

Общими мерами, направленными на уменьшение заливаемости судна и погружение его оконечностей в волну, являются: седловатость палубы, расширение верхней части носовых шпангоутов, образующее развал бортов, а также установка в носовой части верхней палубы водоотбойного козырька, который разрушает покрывающую судно волну и отводит ее к бортам.

Для успокоения наиболее неблагоприятной и опасной бортовой качки применяют специальные меры, заключающиеся в установке успокоителей качки, которые делят на пассивные и активные . Действие первых основано на использовании энергии качания самого судна, действие вторых - на использовании внешних источников энергии, они искусственно управляются. Рассмотрим наиболее простые и эффективные успокоители качки.

1) Боковые (скуловые) кила (рис. 20) представляют собой простейшие пассивные успокоители, имеющие вид наделок в виде пластин площадью до 4% от площади ватерлинии. Эти пластины устанавливают по нормали к скуле в средней части корпуса вдоль линии тока воды, длиной до 40% от длины судна. Принцип действия этих килей заключается в создании момента, обратного моменту качания судна. Под действием таких боковых килей амплитуда бортовой качки уменьшается до 50%.

2) Бортовые пассивные цистерны (рис. 21) устроены по принципу сообщающихся сосудов в виде бортовых цистерн, соединенных водными и воздушными каналами с клапаном, регулирующим переливание воды между цистернами. Клапан регулирует воду с таким расчетом, чтобы она не поспевала за креном судна, а, отставая, переливалась бы по инерции в сторону поднимающегося борта, когда момент воды в цистерне, противодействуя наклонению судна, успокаивает его качку.


Рис. 20. Боковые кили и их конструкция.


Эти цистерны дают хорошие результаты как успокоители только при режимах качки, близких к резонансу. Во всех прочих случаях они почти не умеряют качку, а даже увеличивают его амплитуду.


Рис. 21. Бортовые пассивные цистерны и положение в них жидкости при качке судна в резонанс с волной.


3) Бортовые активные цистерны представляют собой такие же бортовые цистерны, соединенные каналами, но вода в них перетекает под воздействием автоматически регулируемых насосов. Эти цистерны действуют эффективно при всех режимах качки судна. Вес воды, находящейся в активных цистернах (обычно их используют под пресную воду или топливо), должен составлять приблизительно 4% от водоизмещения судна.

4) Управляемые боковые рули (рис. 22) являются активными успокоителями качки и устанавливаются в подводной части корпуса в том районе, где ширина судна наибольшая.


Рис 22 Схема работы управляемых боковых рулей левого борта, 1 - аппаратура управления; 2 - система управления; 3 - приводы рулей; 4- ниши для рулей; 5 -перо руля левого борта; 6 - перо руля правого борта. V-скорость и направление набегающего потока; Р - подъемная сила; F - лобовое сопротивление.


Перекладка рулей производится автоматически: на всплытие - на погружающемся борту, на погружение - на всплывающем борту судна. Подъемные силы, возникающие на рулях, образуют момент, обратный наклонению судна, умеряющий амплитуду качки до четырехкратного ее размера. Так как подъемная сила рулей зависит от скорости судна, боковые рули эффективны только на быстроходных судах.

При отсутствии качки для устранения дополнительного сопротивления движению судна и предотвращения поломки рулей при швартовке бортом боковые рули убирают в специальные ниши внутрь корпуса судна.


Рис. 23. Схема устройства гироскопического успокоителя качки. 1 - гироскоп; 2 - рама гироскопа; 3 - цапфы, конструктивно связывающие раму с корпусом; 4 - устройство, поворачивающее или тормозящее раму гироскопа.


5) Гироскопический успокоитель (рис. 23) основан на использовании гироскопического эффекта - свойстве гироскопа сохранять неизменной ось своего вращения. Гироскопический момент в значительной степени компенсирует кренящий момент, снижая амплитуду качки. Успокоитель представляет собой маховик, вращающийся в раме, связанной на шарнирах с корпусом судна.

При бортовой качке судна рама гироскопа самопроизвольно раскачивается в ДП. Если эти качания рамы тормозить или принудительно поворачивать раму при помощи специального электродвигателя, то она будет оказывать на цапфы добавочные давления, образующие пару, противодействующую качке судна. Например, такой успокоитель (с маховиком весом 20 т) установлен на американской подводной лодке «Джордж Вашингтон».

Управляемостью судна называется его способность удерживать заданное направление движения или изменять его в соответствии с перекладкой пера руля. Управляемость характеризуется, с одной стороны, способностью судна противостоять на ходу действию внешних сил, затрудняющих удержание заданного направления движению, - устойчивостью на курсе и, с другой стороны, способностью судна изменять направление движения и двигаться по криволинейной траектории - эта способность называется поворотливостью .

Таким образом, под управляемостью судна понимаются оба эти качества, которые являются противоречивыми. Так, если создать судно с таким соотношением главных размерений, которые обеспечат ему твердую устойчивость на курсе, то судно будет обладать плохой поворотливостью. Наоборот, если судно будет обладать хорошей поворотливостью, то оно будет неустойчивым и рыскливым на курсе. При создании судна необходимо это учитывать и выбирать оптимальное значение для каждого из этих качеств с таким расчетом, чтобы судно обладало нормальной управляемостью.

Рыскливостью называется способность судна самопроизвольно отклоняться от курса под влиянием внешних сил. Считается, что судно устойчиво на курсе, если для его удержания число перекладок руля не превышает 4-6 в минуту и судно при этом успевает отклониться от курса не свыше 2-3°.

Для обеспечения устойчивости судна на курсе и его поворотливости в кормовой части судна устанавливают рули. При перекладке руля на борт возникает момент пары сил, поворачивающий судно вокруг вертикальной оси, проходящей через его центр тяжести, в ту сторону, в которую переложен руль (рис. 24).


Рис. 24. Схема сил, действующих на судно при перекладке пера руля. N - равнодействующая сил давления воды на перо руля; l- плечо пары сил, вращающих судно; Q - сила дрейфа; F - лобовое сопротивление движению судна.


Перенесем равнодействующую N в центр тяжести судна - точку G, не меняя ее направления и величины, и приложим вторую силу N в обратном направлении. Образовавшаяся пара сил создает момент Mпов = Nl, отклоняющий судно от прямого направления в сторону перекладки пера руля.

Силу N обратного направления разложим на две составляющие: F - силу, направленную вдоль - в сторону, обратную движению судна, и создающую лобовое сопротивление, уменьшающее скорость хода судна примерно на 25-50%; Q - силу дрейфа, действующую перпендикулярно ДП и вызывающую перемещение судна лагом, которое быстро погашается сопротивлением воды.

Если руль идущего с определенной скоростью судна оставить положенным на борт, то центр тяжести судна (вокруг которого оно поворачивается) начнет изменять траекторию своего движения из прямой в криволинейную, постепенно переходящую в окружность постоянного диаметра D ц, который называется диаметром циркуляции , а движение судна по такой траектории - циркуляцией судна (рис. 25).

Диаметр циркуляции, выраженный в длинах судна, определяет степень поворотливости судна. Судно считается хорошо поворотливым, если D ц = (3/5) L. Чем меньше диаметр циркуляции, тем лучше поворотливость судна. Расстояние l, пройденное судном между ЦТ его в момент перекладки руля и до поворота судна на 90°, измеренное по прямой его движения, называется выдвигом .


Рис. 25. Циркуляция судна. D ц - диаметр установившейся циркуляции; D т - тактический диаметр циркуляции; ,в - угол дрейфа.


Расстояние между положением диаметральной плоскости в начале поворота и после изменения курса судна на 180°, измеренное по перпендикуляру к первоначальному направлению движения, называется тактическим диаметром циркуляции , который обычно составляет D т = (0,9/1,2) D ц. Угол, образованный положением ДП и касательной к траектории движения судна при циркуляции, проведенной через точку G, называется углом дрейфа в.

При движении судна на циркуляции у него возникает крен на борт, противоположный перекладке руля. Кренящий момент образуется от пары сил: центробежной силы инерции, приложенной в ЦТ судна, и силы гидродинамического давления, приложенной приблизительно посередине осадки. Максимального значения угол крена достигает при диаметре циркуляции, равном 5L, и становится тем больше, чем больше скорость судна и чем меньше диаметр циркуляции, и увеличение этих параметров может привести к опрокидыванию судна.

Ходкостью судна называется его способность перемещаться с заданной скоростью при затрате определенной мощности главных двигателей.

При движении судна на него сразу же начинают действовать силы сопротивления воды и воздуха, направленные в сторону, противоположную его движению, преодолеваемые упорным давлением движителя.

Изучение вопросов, связанных с закономерностью этих сопротивлений, дает возможность выбора наиболее рациональных обводов судна, обеспечивающих достижение скорости при минимальной затрате мощности двигателей.

Сопротивления движению судна возрастают при увеличении его скорости и равны сумме отдельных сопротивлений. Сопротивление воды слагается из:

А) сопротивления формы или вихревого сопротивления Rф, зависящего от формы погруженной части корпуса и создающихся за кормой вихревых образований воды, которые, отрываясь от судна, уносят с собой приобретенную ими живую силу вращательного движения. Чем полнее корпус судна и хуже его обтекаемость, тем больше вихрей и значительнее сопротивление;


Рис. 26. Система волн, возникающих при движении судна. 1, 2 - расходящиеся кормовые и носовые соответственно; 3, 4 - поперечные носовые и кормовые соответственно.


б) сопротивления трения R т, которое зависит от скорости судна и величины поверхности погруженной в воду части корпуса. Сопротивление трения возникает оттого, что частички воды, соприкасающиеся с погруженной поверхностью корпуса, прилипают к ней и приобретают скорость судна. Соседние слои воды также начинают двигаться, но по мере удаления от поверхности корпуса скорость их постепенно снижается и пропадает совсем. Таким образом, на поверхности погруженной части корпуса образуется так называемый пограничный слой, в поперечном сечении которого скорость воды неодинакова. Экспериментальным путем получены формулы, с помощью которых определяется трение судовой поверхности.

Шероховатость поверхности увеличивает сопротивление трения, которое учитывается дополнительно.

На сопротивление трения большое влияние оказывает обрастание подводной части корпуса водорослями, ракушками и другими организмами, жувущими в воде, которое увеличивает трение между корпусом и водой. Известны случаи, когда через 4-5 месяцев после очистки подводной поверхности скорость судна из- за обрастания уменьшалась на 4-5 узл.

В) волнового сопротивления R В, зависящего от формы подводной части корпуса и представляющего собой затрату части мощности главного двигателя на образование системы волн, сопровождающей судно на ходу (рис. 26).

На малых скоростях образуются преимущественно расходящиеся волны. При увеличении скорости хода возрастает величина поперечных волн, на образование которых затрачиваются большие мощности; в.ч

Г) сопротивления выступающих частей R , зависящего от сопротивления отдельных выступающих частей, расположенных в подводной части корпуса: рулей, кронштейнов, боковых килей, выступающих деталей приборов и т. п.

Для определения величины этих сопротивлений (за исключением сопротивления трения, которое определяется расчетно-экспериментальным путем), проводят испытания моделей судов в специальных опытовых бассейнах, размеры которых достигают 1500x20 м при глубине до 7 м. Длина моделей 2-8 м.

Буксировку этих моделей осуществляют с помощью специальных тележек, движущихся по рельсам, уложенным по обеим сторонам бассейна. Модель соединяется с тележкой через динамометр, замеряющий силу сопротивления модели при равномерном движении тележки с определенной скоростью вдоль бассейна. Модели судов делают из деревянного каркаса (скельтон), обтянутого парусиной и покрытого слоем парафина. Парафин хорошо обрабатывается и легко поддается переделкам и восстановлению. Иногда модели делают полностью из дерева.

Полученные при испытании моделей результаты пересчитывают на натурное судно по законам динамического подобия. Воздушное сопротивление R В3 зависит от величины проекции надводной части судна на плоскость миделя; скорости, направления движения; скорости ветра. Оно определяется в аэродинамической трубе методом продува в ней модели и достигает на больших скоростях внушительных размеров, доходящих до 10% от полного сопротивления. После определения всех отдельных сопротивлений полное сопротивление движению судна определяется как сумма их, равная


Полное сопротивление является основой для определения необходимой мощности главной судовой силовой установки, которая преобразуется движителями в поступательное движение судна с заданной скоростью.

Существуют три вида необходимой мощности

1) буксировочная, или эффективная, мощность (EPS) , необходимая для преодоления полного сопротивления движению судна с определенной скоростью, выраженная в лошадиных силах (1 л. с.=75 кГм/сек); она равна


где R - полное сопротивление, кГ

V - скорость судна, м/сек;

2) мощность на валу двигателя (BPS) , она больше предыдущей и определяется на основе буксировочной с учетом коэффициентов полезного действия самого движителя, передаточных механизмов (редукторов, муфт и т. п.), валопровода (опорных и подшипников и т. п.), она равна


где n - коэффициент полезного действия: n д - движителя; n н - валопровода; n П - передаточного механизма и прочие;

3) индикаторная мощность (JPS), которая в свою очередь больше мощности на валу и равна необходимой мощности силовой установки, с учетом коэффициента полезного действия самого двигателя, т. е.


где Ц М - механический коэффициент полезного действия машины. Произведение всех коэффициентов полезного действия называют общим пропульсивным коэффициентом , который у современных судов находится в пределах т) = 0,2-0,64. Все приведенные расчеты относились к сопротивлениям на тихой воде. Волнение, качка, рыскание судна и другие явления также влияют на скорость движения судна, снижая ее в среднем еще на 7-9%, а при сильном шторме и волнении - до 50-60%. Мощность главной судовой силовой установки преобразуется в поступательное движение судна судовыми движителями.

Вперед
Оглавление
Назад

Однажды при входе в порт Кале он совсем отказался повиноваться рулевому.

С полного хода врезался «Бессемер» в каменный мол. Его носовая часть превратилась в кашу из обломков.

Бессемер не стал чинить свой пароход. Он потерял навсегда всякий интерес к кораблестроению.

После Бессемера немало изобретателей и ученых работало над созданием успокоителей качки. Было предложено множество различных систем. Но только Макаров (1848-1904). немногие из них получили право на жизнь и на широкое применение.

Очень интересный тип успокоителя качки для военных кораблей был разработан в 1894 году выдающимся флотоводцем и ученым- адмиралом Степаном Осиповичем Макаровым.

Успокоитель Макарова выгодно отличался от успокоителей других систем простотой и дешевизной своего устройства и в то же время сильным противодействием качке. Впоследствии появился усовершенствованный и приспособленный для торговых судов успокоитель Фрама. Его устройство состоит из двух цистерн, выгороженных по бортам парохода. По высоте они расположены между днищем и палубой. Длина их не более десяти метров. Цистерны соединены трубой или каналом, проложенным по днищу. Получается вроде сообщающихся сосудов, у которых вода налита до половины высоты. Наверху цистерны сообщаются между собой воздушной трубой. Посредине трубы установлен регулирующий клапан. Через него можно перепускать сжатый воздух то в одну, то в другую цистерну. Как же действует такой успокоитель?

Представьте себе человека с коромыслом на плечах. На концах коромысла прикреплены одинаковые ведра, наполненные водой. Пока концы уравновешены, человеку легко качать коромысло. Он может так его качать, что ведра будут достигать земли. Теперь навесим на один конец еще одно полное ведро. Тут уж такой легкости качания не будет. Ясно, что конец с двумя ведрами будет подниматься медленно и с большим

усилием. Если перенесем добавочное ведро на другой конец коромысла, получится обратная картина.

Этот пример с ведрами мы и используем, чтобы понять действие успокоителя Фрама. Вот пароход при качке накренился вправо. Тогда и всю воду перегоняют вправо, но не сразу, а небольшими порциями. Если перегнать сразу, то вода своей тяжестью только поможет качке. А нужно, наоборот, чтобы она препятствовала. Воду перегоняют с таким расчетом, чтобы цистерна правого борта заполнилась в тот момент, когда этот борт начнет подниматься. Вот тогда полностью заполненная цистерна и будет вроде добавочного ведра на коромысле. Она будет уменьшать размах качки. Дальше начинает крениться левый борт. Вода тем же порядком перегоняется влево. Когда левый борт начинает подниматься вверх, в действие вступает целиком заполненная цистерна этого борта. Это похоже на то, как если бы мы перенесли добавочное ведро с водой на другой конец коромысла.

Устройство успокоителя Фрама.

Так попеременное переливание воды с одного борта на другой в несколько раз уменьшает размахи качки.

Действие цистерн Фрама было проверено в русском флоте в 1913 году. Вот как вспоминает об этом академик А. Н. Крылов:

«Была образована специальная комиссия. Судили, рядили месяцев десять, ни к чему не пришли: одни говорят, надо применять успокоители Фрама, другие говорят,-цистерны Фрама вредны, и все на заграничные журналы ссылаются. Наконец, в феврале 1913 года морской министр Григорович назначает заседание под личным своим председательством. Выслушивает противоречивые мнения комиссии, которая «ни к чему не привела, только время провела». И тогда обращается ко мне:

А вы что скажете?

Пока мы будем разными журнальными статьями руководствоваться, ни к чему не придем. Надо отыскать пароход, снабженный цистернами Фрама, назначить на него комиссию из наших офицеров, идти в океан и произвести всесторонние испытания, тогда мы получим свои данные - полные и проверенные.

Назначаю такую комиссию под вашим председательством, ищите пароход, берите с собой, кого хотите, и через неделю будьте в море».

Комиссия Крылова, проведя испытания на парохрде «Метеор», убедительно доказала, что польза от цистерн Фрама есть. Цистерны были испытаны в самых различных условиях плавания: от легкой зыби на море до жестокого двенадцатибалльного шторма. Емкость цистерн составляла всего полтора процента от водоизмещения судна, а размахи качки уменьшались втрое и вчетверо. Сейчас заполнение таких цистерн производится автоматически, и поэтому они называются активными.

Существуют еще гироскопические успокоители качки, или гироскопы. Главная часть гироскопа - тяжелый диск, который вращается вокруг вертикальной оси со скоростью до 3000 оборотов в минуту. Ось прочно закреплена в большой раме, опоры которой составляют одно целое с корпусом судна. Рама качается на этих опорах точно так, как качался на своей раме «ящик» парохода «Бессемер».

Пока нет качки, ось диска сохраняет свое вертикальное положение. Но вот начинается бортовая качка. Тут сразу же пускают в ход электромотор, вращающий диск. Диск становится волчком, вроде того, каким мы играли в детстве. И, как бы ни наклонялся от качки диск, его вертикальная ось, как ось всякого волчка, стремится сохранить свое прежнее вертикальное положение. Тут-то и проявляется действие гироскопа.

Положим, правый борт судна стремительно клонится к воде. Вместе с ним должна наклониться и вертикальная ось диска. Но она, по свойству волчка, упорно сопротивляется такому наклону. А поэтому ось давит на раму и через опоры рамы - на корпус судна. И давит как раз в сторону, противоположную наклону судна. Так гироскоп умеряет качку судна.

Недавно придумали новые успокоители качки - скуловые рули.

Это так называемый пассивный гироуспокоитель. В последнее время чаще ставят активный гироуспокоитель. У него рама
качается на опорах не сама по себе, а при помощи особого электродвигателя. Этим усиливается на опорах рамы давление, противодействующее крену судна.

Гироскоп - огромный механизм. Диаметр диска достигает четырех метров. Поэтому для гироскопов выделяют особое помещение больших размеров.

На судне, оборудованном гироскопами, качка почти не ощущается. Но зато гироскоп - очень сложный и дорогостоящий механизм и потому большого распространения для успокоения качки еще не получил. Зато
идея гироскопа широко применяется в устройстве различных приборов.

Недавно придумали новые успокоители качки. Это скуловые управляемые рули. Они напоминают боковые кили. Но боковые кили прикреплены к корпусу неподвижно. А скуловые рули могут автоматически поворачиваться специальным двигателем вверх и вниз. Их все время ставят в самое выгодное положение, чтобы они на ходу судна, подобно крыльям самолета, создавали подъемную силу. Вот эта сила и препятствует крену. Опыт использования этих успокоителей показал, что они хороши только для быстроходных судов. Когда качки нет, рули втягиваются внутрь корпуса, в особые «карманы». Это делается для того, чтобы они не тормозили движения судна.

Все, что здесь рассказано об успокоителях, относится к качке бортовой. А что же предпринимается для уменьшения килевой качки? Здесь специальных успокоителей не применяют. Усилия конструкторов направлены к тому, чтобы по возможности улучшить форму надводной части носовой оконечности судна. Например, делают у нее «развал» в стороны бортов, чтобы судно меньше «зарывалось», всходя на волну,