Чему равна гиперзвуковая скорость. Школьная энциклопедия. Появление волн неустойчивости в ПС, не свойственных до- и сверхзвуковым потокам

6-го февраля в 1950-м во время очередного испытания советский реактивный истребитель МиГ-17 в горизонтальном полете превысил скорость звука, разогнавшись почти до 1070-и км/ч. Это превратило его в первый сверхзвуковой самолет серийного производства. Разработчики Микоян и Гуревич явно гордились своим детищем.

Для боевых полетов МиГ-17 считался околозвучным, так как его крейсерская скорость не превышала 861 км/ч. Но это не помешало истребителю стать одним из самых распространенных в мире. В разное время он состоял на вооружении Германии, Китая, Кореи, Польши, Пакистана и десятков других стран. Этот монстр принял участие даже в боевых действиях во Вьетнамской войне.

МиГ-17 - далеко не единственный представитель жанра сверхзвуковых самолетов. Мы расскажем еще о десятке воздушных лайнеров, которые тоже опередили звуковую волну и стали известными во всем мире.

Bell X-1

ВВС США специально оснастили Bell X-1 ракетным двигателем, так как хотели с его помощью изучить проблемы сверхзвукового полёта. 14-го октября в 1947 аппарат разогнался до 1541 км/ч (число Маха 1.26), преодолел заданный барьер и превратился в звезду поднебесья. Сегодня модель-рекордсменка покоится в Смитсоновском музее в Штатах.

Источник: NASA

North American X-15

North American X-15 тоже оснащен ракетными двигателями. Но, в отличие от своего американского коллеги Bell X-1, этот самолет достиг скорости 6167 км/ч (число Маха 5,58), превратившись в первого и на 40 лет единственного в истории человечества (с 1959-го) пилотируемым гиперзвуковым летательным аппаратом, совершавшим суборбитальные пилотируемые космические полёты. С его помощью изучали даже реакцию атмосферы на вход в нее крылатых тел. Всего произведено три единицы ракетопланов типа Х-15.


Источник: NASA

Lockheed SR-71 Blackbird

Грех не применять сверхзвуковые самолеты в военных целях. Поэтому ВВС США спроектировали Lockheed SR-71 Blackbird - стратегический разведчик с максимальной скоростью 3700 км/ч (число Маха 3,5). Главные достоинства - быстрый разгон и высокая маневренность, позволившая ему уклоняться от ракет. Также SR-71 был первым самолётом, который оснастили технологиями снижения радиолокационной заметности.

Построено всего 32 единицы, 12 из которых разбились. В 1998-м снят с вооружения.


Источник: af.mil

МиГ-25

Не можем не вспомнить отечественный МиГ-25 - сверхзвуковой высотный истребитель-перехватчик 3-го поколения с максимальной скоростью 3000 км/ч (число Маха 2,83). Самолет был настолько крутым, что на него позарились даже японцы. Поэтому 6-го сентября в 1976-м советскому летчику Виктору Беленко пришлось угнать МиГ-25. После этого в течение многих лет во многих частях Союза самолеты начали заправлять не до конца. Цель - чтобы они не долетали до ближайшего иностранного аэропорта.


Источник: Алексей Бельтюков

МиГ-31

Советские ученые не прекращали трудиться на воздушное благо отечества. Поэтому в 1968-м началась проектировка МиГ-31. А 16-го сентября в 1975-м он впервые побывал в небе. Этот двухместный сверхзвуковой всепогодный истребитель-перехватчик дальнего радиуса действия разогнался до скорости 2500 км/ч (число Маха 2,35) и стал первым советским боевым самолётом четвёртого поколения.

МиГ-31 предназначен для перехвата и уничтожения воздушных целей на предельно малых, малых, средних и больших высотах, днём и ночью, в простых и сложных метеоусловиях, при активных и пассивных радиолокационных помехах, а также ложных тепловых целях. Четыре МиГ-31 могут контролировать воздушное пространство протяжённостью до 900 километров. Это не самолет, а гордость Союза, которая до сих пор состоит на вооружении России и Казахстана.


Источник: Виталий Кузьмин

Lockheed/Boeing F-22 Raptor

Самый дорогой сверхзвуковой самолет построили американцы. Они смоделировали многоцелевой истребитель пятого поколения, который стал самым дорогим среди коллег по цеху. Lockheed/Boeing F-22 Raptor на сегодняшний день является единственным состоящим на вооружении истребителем пятого поколения и первым серийным истребителем со сверхзвуковой крейсерской скоростью 1890 км/ч (1,78 Маха). Максимальная скорость 2570 км/ч (2,42 Маха). Его в воздухе до сих пор никто так и не превзошел.


Источник: af.mil

Су-100/Т-4

Су-100/Т-4 («сотка») разрабатывался в качестве истребителя авианосцев. Но инженерам ОКБ Сухого удалось не просто достигнуть поставленной цели, а смоделировать крутой ударно-разведывательный бомбардировщик-ракетоносец, который потом хотели применить даже в качестве пассажирского самолета и разгонщика для авиационно-космической системы Спираль. Максимальная скорость Т-4 - 3200 км/ч (3 Маха).


Общие сведения

Полет на гиперзвуковой скорости является частью сверхзвукового режима полета и осуществляется в сверхзвуковом потоке газа. Сверхзвуковой поток воздуха коренным образом отличается от дозвукового и динамика полета самолета при скоростях выше скорости звука (выше 1,2 М) кардинально отличается от дозвукового полета (до 0,75 М, диапазон скоростей от 0,75 до 1,2 М называется трансзвуковой скоростью).

Определение нижней границы гиперзвуковой скорости обычно связано с началом процессов ионизации и диссоциации молекул в пограничном слое (ПС) около аппарата, который движется в атмосфере, что начинает происходить примерно при 5 М. Также данная скорость характеризуется тем, что прямоточный воздушно-реактивный двигатель («ПВРД ») с дозвуковым сгоранием топлива («СПВРД ») становится бесполезным из-за чрезвычайно высокого трения, которое возникает при торможении проходящего воздуха в двигателе этого типа. Таким образом, в гиперзвуковом диапазоне скоростей для продолжения полета возможно использование только ракетного двигателя или гиперзвукового ПВРД (ГПВРД) со сверхзвуковым сгоранием топлива.

Характеристики потока

В то время как определение гиперзвукового потока (ГП) достаточно спорно по причине отсутствия четкой границы между сверхзвуковым и гиперзвуковым потоками, ГП может характеризоваться определенными физическими явлениями, которые уже не могут быть проигнорированы при рассмотрении, а именно:

Тонкий слой ударной волны

По мере увеличения скорости и соответствующих чисел Маха, плотность позади ударной волны (УВ) также увеличивается, что соответствует уменьшению объема сзади от УВ благодаря сохранению массы. Поэтому, слой ударной волны, то есть объем между аппаратом и УВ становится тонким при высоких числах Маха, создавая тонкий пограничный слой (ПС) вокруг аппарата.

Образование вязких ударных слоев

Часть большой кинетической энергии, заключенной в воздушном потоке, при М > 3 (вязкое течение) преобразуется во внутреннюю энергию за счет вязкого взаимодействия. Увеличение внутренней энергии реализуется в росте температуры . Так как градиент давления, направленный по нормали к потоку в пределах пограничного слоя, приблизительно равен нулю, существенное увеличение температуры при больших числах Маха приводит к уменьшению плотности. Таким образом, ПС на поверхности аппарата растет и при больших числах Маха сливается с тонким слоем ударной волны вблизи носовой части, образуя вязкий ударный слой.

Появление волн неустойчивости в ПС, не свойственных до- и сверхзвуковым потокам

Высокотемпературный поток

Высокоскоростной поток в лобовой точке аппарата (точке или области торможения) вызывает нагревание газа до очень высоких температур (до нескольких тысяч градусов). Высокие температуры, в свою очередь, создают неравновесные химические свойства потока, которые заключаются в диссоциации и рекомбинации молекул газа, ионизации атомов, химическим реакциям в потоке и с поверхностью аппарата. В этих условиях могут быть существенны процессы конвекции и радиационного теплообмена .

Параметры подобия

Параметры газовых потоков принято описывать набором критериев подобия , которые позволяют свести практически бесконечное число физических состояний в группы подобия и которые позволяют сравнивать газовые потоки с разными физическими параметрами (давление, температура, скорость и пр.) между собой. Именно на этом принципе основано проведение экспериментов в аэродинамических трубах и перенос результатов этих экспериментов на реальные летательные аппараты, несмотря на то, что в трубных экспериментах размер моделей, скорости потока, тепловые нагрузки и пр. могут сильно отличаться от режимов реального полёта, в то же время, параметры подобия (числа Маха, Рейнольдса, Стантона и пр.) соответствуют полётным.

Для транс- и сверхзвукового или сжимаемого потока, в большинстве случаев таких параметров как число Маха (отношение скорости потока к местной скорости звука) и Рейнольдса достаточно для полного описания потоков. Для гиперзвукового потока данных параметров часто бывает недостаточно. Во-первых, описывающие форму ударной волны уравнения становятся практически независимыми на скоростях от 10 М. Во-вторых, увеличенная температура гиперзвукового потока означает, что эффекты, относящиеся к неидеальным газам становятся заметными.

Учет эффектов в реальном газе означает бо́льшее количество переменных, которые требуются для полного описания состояния газа. Если стационарный газ полностью описывается тремя величинами: давлением , температурой, теплоёмкостью (адиабатическим индексом), а движущийся газ описывается четырьмя переменными, которая включает еще скорость , то горячий газ в химическом равновесии также требует уравнений состояния для составляющих его химических компонентов, а газ с процессами диссоциации и ионизации должен еще включать в себя время как одну из переменных своего состояния. В целом это означает, что в любое выбранное время для неравновесного потока требуется от 10 до 100 переменных для описания состояния газа. Вдобавок, разреженный гиперзвуковой поток (ГП), обычно описываемый в терминах чисел Кнудсена , не подчиняются уравнениям Навье-Стокса и требуют их модификации. ГП обычно категоризируется (или классифицируется) с использованием общей энергии, выраженной с использованием общей энтальпии (мДж /кг), полного давления (кПа) и температуры торможения потока (К) или скорости (км/с).

Идеальный газ

В данном случае, проходящий воздушный поток может рассматриваться как поток идеального газа. ГП в данном режиме все еще зависит от чисел Маха и моделирование руководствуется температурными инвариантами , а не адиабатической стенкой , что имеет место при ме́ньших скоростях. Нижняя граница этой области соответствует скоростям около 5 М, где СПВРД с дозвуковым сгоранием становятся неэффективными, и верхняя граница соответствует скоростям в районе 10-12 М.

Идеальный газ с двумя температурами

Является частью случая режима потока идеального газа с большими значениями скорости, в котором проходящий воздушный поток может рассматриваться химически идеальным, но вибрационная температура и вращательная температура газа должны рассматриваться отдельно, что приводит к двум отдельным температурным моделям. Это имеет особое значение при проектировании сверхзвуковых сопел , где вибрационное охлаждение из-за возбуждения молекул становится важным.

Диссоциированный газ

Режим доминирования лучевого переноса

На скоростях выше 12 км/с передача тепла аппарату начинает происходить в основном через лучевой перенос, который начинает доминировать над термодинамическим переносом вместе с ростом скорости. Моделирование газа в данном случае подразделяется на два случая:

  • оптически тонкий - в данном случае предполагается, что газ не перепоглощает излучение, которое приходит от других его частей или выбранных единиц объема;
  • оптически толстый - где учитывается поглощение излучения плазмой, которое потом переизлучается в том числе и на тело аппарата.

Моделирование оптически толстых газов является сложной задачей, так как из-за вычисления радиационного переноса в каждой точке потока объем вычислений растет экспоненциально вместе с ростом количества рассматриваемых точек.

См. также

Примечания

Ссылки

  • Anderson John Hypersonic and High-Temperature Gas Dynamics Second Edition. - AIAA Education Series, 2006. - ISBN 1563477807
  • NASA’s Guide to Hypersonics (англ.) .

10-07-2015, 11:34

Что стоит за слухами о создании в России нового сверхмощного оружия

Военно-аналитический центр Janes Information Group (США) опубликовал доклад об успешном испытании Россией нового гиперзвукового летательного аппарата Ю-71 (Yu-71 в англоязычной транскрипции).

Испытания, по версии американцев, были проведены еще в феврале 2015 года. Пуск якобы состоялся с полигона Домбаровский под Оренбургом. Их военные аналитики сообщают совершенно секретные и леденящие кровь простого обывателя сведения.

Сообщается, что Ю-71 - часть российского секретного проекта 4202. За океаном определили, что скорость нашей гиперзвуковой ракеты - 11 200 км/час. Маневрирующий с такой скоростью объект невозможно сбить - система ПРО бессильна против таких скоростей. К тому же Ю-71 может нести ядерный заряд.

По мнению американских аналитиков, скоро Россия получит возможность наносить высокоточные удары по выбранным целям. При этом даже самые защищенные из них будут гарантированно поражаться одной ракетой. В США предполагают, что уже через 5 лет развертывание группировки российских гиперзвуковых ракет начнется под тем же Оренбургом, в дислоцированном там Домбаровском полку РВСН, а всего с 2020 по 2025 год в строй введут 24 боевых аппарата, созданных на базе Ю-71. Также из документа следует, что к этому времени Россия создаст новую тяжелую межконтинентальную баллистическую ракету "Сармат", способную нести Ю-71.

Утверждается, что Москве гиперзвуковое оружие необходимо, чтобы получить рычаги воздействия в ходе переговоров с Вашингтоном и ограничить эффективность американской системы ПРО.

До обнародования этой сенсации сообщалось, что военные КНР тоже провели (причем очередное) успешное испытание ударного гиперзвукового летательного аппарата WU-14, способного прорывать систему ПРО США и наносить ядерный удар.

В общем, обложили американцев со всех сторон: с Запада - Китай, с Востока и Севера - Россия. И жаждут они одного - порвать американскую и европейскую ПРО, как Тузик грелку, чтобы стереть с лица земли все стратегические объекты Пентагона. Логика этого ужаса незамысловата: Вашингтон, дай новые миллиарды на разработку собственных гиперзвуковых ракет, а то ведь останемся неприкрытыми, как библейский Адам.

В США работы над гиперзвуковыми ракетами ведутся с не меньшей, а то и большей интенсивностью, чем в России и Китае, вместе взятых. И с очень хорошим финансовым обеспечением.

По всей видимости, каких-то прорывных успехов достичь не удалось, а выделенные из бюджета миллиарды уже потрачены. Как быть? Надо запустить страшилку и обеспечить себе безграничное финансирование. Что и было сделано.

Сама по себе идея создания ракет, способных летать в 5-7, а то и в десятки раз быстрее скорости звука, всегда привлекала военных. Такие аппараты обладают столь мощной кинетической энергией, что способны причинить любому объекту противника самый серьезный урон и без боевой части. А уж с ядерной боеголовкой...

В принципе разогнать боеголовку, выведенную на околоземную орбиту, до гиперзвука и направить ее вниз не очень сложно. Проблема в точном наведении, так как управлять объектом, мчащимся со скоростью свыше 10 000 км/час, пока невозможно. В том числе и потому, что при резком изменении прямолинейной траектории полета боевая часть может просто разрушиться из-за огромных перегрузок.

А построить работоспособный аппарат, способный летать с гиперзвуковой скоростью, да еще и маневрировать в атмосфере, неимоверно сложно.

Дело не только в перегрузках, но и в особенностях горения топлива, огромном воздушном трении о поверхность летящего аппарата, скачках давления на различных поверхностях гиперзвуковой крылатой ракеты.

Тем не менее работы в этом направлении ведутся на протяжении уже нескольких десятков лет.

Ближе всех к практическому созданию крылатой гиперзвуковой ракеты подошли в СССР. Гиперзвуковой экспериментальный летательный аппарат (ГЭЛА), или Х-90, был создан в МКБ "Радуга" в конце 1980-х. После развала СССР проект в 1992 году закрыли. Позже аппарат ГЭЛА несколько раз показали на авиакосмических салонах МАКС в Жуковском.

По конструкции это была крылатая ракета с раскладным треугольным крылом и фюзеляжем, почти полностью отданным под прямоточный двигатель. При стартовой массе 15 тонн ракета Х-90, как утверждали ее разработчики, могла разгоняться до скорости не менее М=4,5 - это минимальное значение гиперзвука. По достоверным, но так официально и не подтвержденным данным, ракету Х-90 в конце 1980-х удачно пустили с самолета-носителя, и она достигла расчетной скорости. Тем не менее в дальнейшем этот проект финансировать не стали и саму тему гиперзвука закрыли более чем на 10 лет.

За океаном создание гиперзвуковых летательных аппаратов шло параллельно с работами в Советском Союзе. Правда, без особых успехов. Прорывным стал проект Boeing X-43. Внешне американский летательный аппарат чем-то напоминал закрытый советский Х-90. В 2001 году этот гиперзвуковой беспилотник совершил свой первый полет, впрочем, неудачный. Второй полет, как считается, прошел штатно. Сверхскорости не достигли, но отработали систему управления. А вот уже на третьем пуске, в ноябре 2004-го, беспилотник Х-43 установил рекорд, разогнавшись до скорости 11 200 км/ч. Это выше, чем достигал наш Х-90.

Развитием экспериментального проекта X-43 в США стала ракета X-51. Она еще больше походит на наш так и не реализованный проект ГЭЛА. Утверждается, что именно Х-51 может стать одним из основных вооружений американской стратегической авиации. По официальным данным, ракета X-51 должна иметь скорость полета порядка М=6-7, что близко к давним показателям нашей Х-90.

Такие скорости, как считают эксперты, достаточны для возможного использования ракет в системе быстрого глобального удара. В 2010 году состоялся первый пуск и полет X-51.

Перспективный российский бомбардировщик – ответ на концепцию быстрого глобального удара?

Соревнование за освоение авиацией гиперзвуковых скоростей началось ещё во времена Холодной войны. В те годы конструкторы и инженеры СССР, США и других развитых стран проектировали новые самолёты, способные летать в 2-3 раза быстрее скорости звука. Гонка за скоростью породила множество открытий в области аэродинамики полётов в атмосфере и быстро достигла пределов физических возможностей пилотов и стоимости изготовления летательного аппарата.

В итоге первыми гиперзвук освоили ракетные конструкторские бюро в своих детищах - межконтинентальных баллистических ракетах (МБР) и ракетах-носителях. При выводе на околоземные орбиты спутников ракеты развивали скорость 18000 – 25000 км/час. Это намного превышало предельные параметры самых быстрых сверхзвуковых самолетов, как гражданских (Конкорд = 2150 км/ч, Ту-144 = 2300 км/ч), так и военных (SR-71 = 3540 км/час, МиГ-31 = 3000 км/час).

Отдельно хочется отметить, что при проектировании сверхзвукового перехватчика МиГ-31 авиаконструктор Г.Е. Лозино-Лозинский использовал в конструкции планера передовые материалы (титан, молибден и др.), что позволило самолету достигнуть рекордной высоты пилотируемого полёта (МиГ-31Д) и максимальной скорости в 7000 км/час в верхних слоях атмосферы. В 1977 году летчик-испытатель Александр Федотов установил на его предшественнике МиГ-25 абсолютный мировой рекорд высоты полета – 37650 метров (для сравнения, у SR-71 максимальная высота полета составила 25929 метров). К сожалению, двигатели для полетов на больших высотах в условиях сильно разреженной атмосферы тогда ещё не были созданы, так как эти технологии только разрабатывались в недрах советских НИИ и КБ в рамках многочисленных экспериментальных работ.

Новым этапом в развитии технологий гиперзвука стали исследовательские проекты по созданию авиационно-космических систем, которые совмещали в себе возможности авиации (пилотаж и манёвр, посадка на ВПП) и космических аппаратов (выход на орбиту, орбитальный полет, спуск с орбиты). В СССР и США эти программы отработали частично, явив миру космические орбитальные самолёты «Буран» и «Спейс Шаттл».

Почему частично? Дело в том, что вывод летательного аппарата на орбиту осуществлялся с помощью ракеты-носителя. Стоимость вывода была огромной, порядка 450 миллионов долларов (по программе «Спейс Шаттл»), что в разы превышало стоимость самых дорогих гражданских и военных самолётов, не позволяло сделать орбитальный самолёт массовым изделием. Необходимость вложения гигантских средств в создание инфраструктуры, обеспечивающей сверхбыстрые межконтинентальные перелёты (космодромы, центры управления полётом, топливно-заправочные комплексы) окончательно похоронила перспективу пассажирских перевозок.

Единственным заказчиком, хоть как-то заинтересованным в гиперзвуковых аппаратах, остались военные. Правда, этот интерес носил эпизодический характер. Военные программы СССР и США по созданию авиационно-космических самолётов шли разными путями. Наиболее последовательно они были реализованы всё-таки в СССР: от проекта по созданию ПКА (планирующего космического аппарата) до МАКС (многоцелевая авиационная космическая система) и «Бурана» была выстроена последовательная и непрерывная цепочка научно-технических заделов, на основании которых создавался фундамент будущих экспериментальных полётов прототипов гиперзвуковых самолётов.

Ракетные КБ продолжали совершенствовать свои МБР. С появлением современных комплексов ПВО и ПРО, способных сбивать боевые части МБР на большом удалении, к поражающим элементам баллистических ракет стали предъявлять новые требования. Боеголовки новых МБР должны были преодолевать противовоздушную и противоракетную оборону противника. Так появились боевые части, способные преодолевать ВКО на гиперзвуковых скоростях (М=5-6).

Отработка гиперзвуковых технологий для боевых частей (боеголовок) МБР позволила начать несколько проектов по созданию оборонного и наступательного гиперзвукового оружия - кинетического (рельсотрон), динамического (крылатые ракеты) и космического (удар с орбиты).

Активизация геополитического соперничества США с Россией и Китаем реанимировала тему гиперзвука как перспективного инструмента, способного обеспечить преимущество в сфере космических и ракетно-авиационных вооружений. Повышение интереса к этим технологиям обусловлено и концепцией нанесения максимального ущерба противнику обычными (не ядерными) средствами поражения, которая фактически реализуется странами НАТО во главе с США.

Действительно, если в распоряжении военного командования будет хотя бы сотня гиперзвуковых аппаратов в неядерном оснащении, которые легко преодолевают существующие системы ПВО и ПРО, то этот «последний довод королей» напрямую влияет на стратегический баланс между ядерными державами. Мало того, гиперзвуковая ракета в перспективе может уничтожать элементы стратегических ядерных сил как с воздуха, так и из космоса в сроки не более часа от момента принятия решения до момента поражения цели. Именно такая идеология заложена в американской военной программе Prompt Global Strike (быстрый глобальный удар).

Осуществима ли подобная программа на практике? Аргументы «за» и «против» разделились примерно поровну. Давайте разберёмся.

Американская программа Prompt Global Strike

Концепция Prompt Global Strike (PGS) принята в 2000-е годы по инициативе командования ВС США. Её ключевым элементом является возможность нанести неядерный удар по любой точке земного шара в течение 60 минут после принятия решения. Работы в рамках этой концепции ведутся одновременно по нескольким направлениям.

Первым направлением PGS, и наиболее реалистичным с технической точки зрения, стало использование МБР с высокоточными неядерными боевыми блоками, в том числе с кассетными, которые оснащаются набором самонаводящихся суббоеприпасов. В качестве отработки этого направления была выбрана МБР морского базирования Trident II D5, доставляющая поражающие элементы на максимальную дальность 11300 километров. В данное время идут работы по снижению КВО боеголовок до значений в 60-90 метров.

Вторым направлением PGS выбраны стратегические гиперзвуковые крылатые ракеты (СГКР). В рамках принятой концепции реализуется подпрограмма X-51A Waverider (SED-WR). По инициативе ВВС США и поддержке DARPA с 2001 года разработку гиперзвуковой ракеты ведут фирмы Pratt & Whitney и Boeing.

Первым результатом проводящихся работ должно стать появление к 2020 году демонстратора технологий с установленным гиперзвуковым прямоточным воздушно-реактивным двигателем (ГПВРД). По оценкам экспертов СГКР с этим двигателем может иметь следующие параметры: скорость полёта М = 7–8, максимальная дальность полета 1300-1800 км, высота полета 10-30 км.

В мае 2007 года после детального рассмотрения хода работ по X-51A «WaveRider» военные заказчики утвердили проект ракеты. Экспериментальная СГКР Boeing X-51A WaveRider представляет собой классическую крылатую ракету с подфюзеляжным ГПВРД и четырехконсольным хвостовым оперением. Материалы и толщина пассивной теплозащиты выбирались в соответствии с расчетными оценками тепловых потоков. Носовой модуль ракеты выполнен из вольфрама с кремниевым покрытием, который выдерживает кинетический нагрев до 1500°С. На нижней поверхности ракеты, где ожидаются температуры до 830°С, используются керамические плитки, разработанные Boeing ещё для программы «Спейс Шаттл». Ракета X-51A должна отвечать высоким требованиям по малозаметности (ЭПР не более 0,01 м 2). Для разгона изделия до скорости, соответствующей M = 5 планируется установка тандемного ракетного ускорителя на твердом топливе.

В качестве основного носителя СГКР предполагается использовать самолеты стратегической авиации США. Пока нет сведений о том, как будут размещаться эти ракеты – под крылом или внутри фюзеляжа «стратега».

Третьим направлением PGS являются программы по созданию систем кинетического оружия, поражающего цели с орбиты Земли. Американцы подробно рассчитали результаты боевого применение стержня из вольфрама длиной около 6 метров и диаметром 30 см, сброшенного с орбиты и поражающего наземный объект на скорости порядка 3500 м/с. Согласно расчётам, в точке встречи высвободится энергия, эквивалентная взрыву 12 тонн тринитротолуола (тротила).

Теоретическое обоснование дало старт проектам двух гиперзвуковых аппаратов (Falcon HTV-2 и AHW), которые будут запускаться на орбиту ракетами-носителями и в боевом режиме смогут планировать в атмосфере с наращиванием скорости при подлёте к цели. Пока эти разработки находятся на стадии эскизного проектирования и экспериментальных пусков. Основными проблемными вопросами пока остаются системы базирования в космосе (космические группировки и боевые платформы), системы высокоточного наведения на цель и обеспечение скрытности выведения на орбиту (любой запуск и орбитальные объекты вскрываются российскими системами предупреждения о ракетном нападении и контроля космического пространства). Проблему скрытности американцы надеются решить после 2019 года, с запуском в эксплуатацию многоразовой авиационной космической системы, которая будет выводить полезную нагрузку на орбиту «по самолётному», посредством двух ступеней – самолёта-носителя (на основе Боинг 747) и беспилотного космического самолёта (на основе прототипа аппарата Х-37В).

Четвертым направлением PGS является программа по созданию беспилотного гиперзвукового самолёта - разведчика на базе известного Lockheed Martin SR-71 Blackbird.

Подразделение Lockheed - компания Skunk Works, в настоящее время разрабатывает перспективный БПЛА под рабочим название SR-72, который должен в два раза превысить максимальную скорость SR-71, достигнув значений около М = 6.

Разработка гиперзвукового разведчика вполне оправдана. Во-первых, SR-72 из-за своей колоссальной скорости будет малоуязвим для систем ПВО. Во-вторых, он заполнит «пробелы» в работе спутников, оперативно добывая стратегическую информацию и обнаруживая мобильные комплексы МБР, соединения кораблей, группировки сил противника на ТВД.

Рассматриваются два варианта самолета SR-72 - пилотируемый и беспилотный, также не исключается использование его в качестве ударного бомбардировщика, носителя высокоточного оружия. Скорее всего, в качестве вооружения могут использоваться облегченные ракеты без маршевого двигателя, поскольку при запуске на скорости в 6 М он не нужен. Высвобождающийся вес, вероятно, будет использован для увеличения могущества БЧ. Лётный прототип самолёта Lockheed Martin планирует показать в 2023 году.

Китайский проект гиперзвукового самолёта DF-ZF

27 апреля 2016 года американское издание «Washington Free Beacon» со ссылкой на источники в Пентагоне сообщило миру о седьмом испытании гиперзвукового китайского летательного аппарата DZ-ZF. Летательный аппарат был запущен с космодрома Тайюань (провинция Шаньси). По данным газеты самолёт совершал манёвры на скорости от 6400 до 11200 км/ч, и упал на полигоне в Западном Китае.

«По оценке разведки Соединенных Штатов, КНР планирует использовать гиперзвуковой самолёт в качестве средства доставки ядерных зарядов, способного преодолевать системы ПРО, - отметило издание. - DZ-ZF также может использоваться в качестве оружия, способного уничтожить цель в любой точке мира в течение часа».

Согласно анализу проведённому разведкой США всей серии испытаний - запуски гиперзвукового самолёта осуществлялись баллистическими ракетами малой дальности DF-15 и DF-16 (дальность до 1000 км), а также средней дальности DF-21 (дальность 1800 км). Не исключалась дальнейшая отработка запусков на МБР DF-31А (дальность 11200 км). По программе испытаний известно следующее: отделяясь от носителя в верхних слоях атмосферы, аппарат конусообразной формы с ускорением планировал вниз и маневрировал на траектории выхода на цель.

Несмотря на многочисленные публикации иностранных СМИ о том, что китайский гиперзвуковой летательный аппарат (ГЛА) предназначен для поражения американских авианосцев, китайские военные эксперты отнеслись к таким заявлениям скептически. Они указали на общеизвестный факт, что сверхзвуковая скорость ГЛА создаёт вокруг аппарата облако плазмы, которое мешает работе бортовой РЛС при корректировке курса и наведении на такую подвижную цель, как авианосец.

Как заявил в интервью China Daily профессор Командного колледжа ракетных войск НОАК полковник Шао Юнлин: «Сверхвысокая скорость и дальность делает его (ГЛА) превосходным средством уничтожения наземных целей. Он, в перспективе, может заменить межконтинентальные баллистические ракеты».

Согласно докладу профильной комиссии Конгресса США, DZ-ZF может быть принят на вооружение НОАК в 2020 году, а его усовершенствованная дальнобойная версия - к 2025 году.

Научно-технический задел России – гиперзвуковые самолёты

Гиперзвуковой Ту-2000

В СССР работы над гиперзвуковым самолётом начались в ОКБ Туполева в середине 1970-х годов, на основе серийного пассажирского самолёта Ту-144. Проводилось исследование и проектирование самолёта, способного развивать скорость до М=6 (ТУ-260) и дальностью полёта до 12000 км, а также гиперзвукового межконтинентального самолёта ТУ-360. Его дальность полёта должны была достигать 16000 км. Был даже подготовлен проект пассажирского гиперзвукового самолёта Ту-244, рассчитанного на полёт на высоте 28-32 км со скоростью М=4,5-5.

В феврале 1986 года в США начался НИОКР по создание космоплана Х-30 с воздушно-реактивной силовой установкой, способного выходить на орбиту в одноступенчатом варианте. Проект National Aerospace Plane (NASP), отличался обилием новых технологий, ключевой из которых был двухрежимный гиперзвуковой прямоточный воздушно-реактивный двигатель, позволяющий летать на скоростях М=25. По полученным разведкой СССР сведениям, NASP прорабатывался для гражданских и военных целей.

Ответом на разработку трансатмосферного X-30 (NASP) стали постановления правительства СССР от 27 января и 19 июля 1986 о создании эквивалента американскому воздушно-космическому самолёту (ВКС). 1 сентября 1986 года Министерство обороны выпустило техническое задание на одноступенчатый многоразовый воздушно-космический самолет (МВКС). По этому техзаданию МВКС должен был обеспечить эффективную и экономичную доставку на околоземную орбиту грузов, высокоскоростную трансатмосферную межконтинентальную транспортировку, решение военные задач, как в атмосфере, так и в ближнем космическом пространстве. Из представленных на конкурс работ ОКБ Туполева, ОКБ Яковлева и НПО «Энергия» одобрение получил проект Ту-2000.

В результате предварительных исследований по программе МВКС выбиралась силовая установка на основе отработанных и проверенных решений. Существующие воздушно-реактивные двигатели (ВРД), использовавшие атмосферный воздух, имели ограничения по температуре, они использовались на самолётах, скорость которых не превышала М=3, а ракетные двигатели должны были нести большой запас топлива на борту и не годились для продолжительных полётов в атмосфере. Поэтому было принято важное решение – чтобы самолёт мог летать на сверхзвуковых скоростях и на всех высотах, его двигатели должны иметь черты и авиационной, и космической техники.

Оказалось, что наиболее рациональным для гиперзвукового самолёта является прямоточный воздушно-реактивный двигатель (ПВРД), в котором нет вращающихся частей, в комбинации с турбореактивным двигателем (ТРД) для разгона. Предполагалось, что для полётов с гиперзвуковыми скоростями наиболее подходит ПВРД на жидком водороде. А разгонный двигатель - это ТРД работающий или на керосине, или на жидком водороде.

В результате, за рабочий вариант была принята комбинация экономичного ТРД, работающего в диапазоне скоростей М=0-2,5, второго двигателя - ПВРД, разгоняющего летательный аппарат до М=20 и ЖРД для выхода на орбиту (разгон до первой космической скорости 7,9 км/с) и обеспечения орбитальных манёвров.

Из-за сложности решения комплекса научно-технических и технологических задач по созданию одноступенчатого МВКС программа была разбита на два этапа: создание экспериментального гиперзвукового самолета со скоростью полета до М=5-6, и разработка прототипа орбитального ВКС, обеспечивающего проведение лётного эксперимента во всём диапазоне полетов, вплоть до выхода в космос. Помимо этого на втором этапе работ МВКС намечалось создать варианты космического бомбардировщика Ту-2000Б, который проектировался как двухместный самолёт с дальностью полёта 10000 км и взлетным весом 350 тонн. Шесть двигателей с питанием на жидком водороде должны были обеспечить скорость М=6-8 на высоте в 30-35 км.

По данным специалистов ОКБ им. А.Н.Туполева, стоимость постройки одного ВКС должна была составить около 480 млн. долларов, в ценах 1995 года (при затратах на ОКР 5,29 млрд. долларов). Предполагаемая стоимость запуска должна была составить 13,6 млн. долларов, при количестве 20 пусков в год.

Первый раз макет самолета Ту-2000 был показан на выставке «Мосаэрошоу-92». До остановки работ в 1992 году, для Ту-2000 были изготовлены: кессон крыла из никелевого сплав, элементы фюзеляжа, криогенные топливные баки и композитные топливопроводы.

Атомный М-19

Давний «конкурент» по стратегическим летательным аппаратам ОКБ им. Туполева – Экспериментальный машиностроительный завод (сейчас ЭМЗ им. Мясищева) также занимался разработками одноступенчатого ВКС в рамках НИОКР «Холод-2». Проект получил название «М-19» и предусматривал проработку по следующим темам:

  • Тема 19-1. Создание летающей лаборатории с силовой установкой на жидком водородном топливе, отработка технологии работ с криогенным топливом;
  • Тема19-2. Проектно-конструкторские работы по определению облика гиперзвукового самолета;
  • Тема 19-3. Проектно-конструкторские работы по определению облика перспективного ВКС;
  • Тема 19-4. Проектно-конструкторские работы по определению облика альтернативных вариантов ВКС с ядерной двигательной установкой.

Работы по перспективному ВКС проводились под непосредственным руководством Генерального конструктора В.М. Мясищева и Генерального конструктора А.Д. Тохунца. Для выполнения составных частей НИОКР были утверждены планы совместных работ с предприятиями МАП СССР, в том числе: ЦАГИ, ЦИАМ, НИИАС, ИТПМ и многими другими, а также с НИИ Академии наук и Министерства обороны.

Облик одноступенчатого ВКС М-19 определился после исследования многочисленных альтернативных вариантов аэродинамической компоновки. В части исследований характеристик силовой установки нового типа проводились испытания моделей ГПВРД в аэродинамических трубах на скоростях, соответствующих числам М=3-12. Для оценки эффективности будущего ВКС были также проработаны математические модели систем аппарата и комбинированной силовой установки с ядерным ракетным двигателем (ЯРД).

Использование ВКС с комбинированной ядерной двигательной установкой предполагало расширенные возможности интенсивного освоения как околоземного космического пространства, включая удаленные геостационарные орбиты, так и области дальнего космоса, в том числе Луну и окололунное пространство.

Наличие на борту ВКС ядерной установки позволяло бы также использовать её в качестве мощного энергетического узла для обеспечения функционирования новых типов космического оружия (лучевое, пучковое оружие, средства воздействия на климатические условия и т. п.).

Комбинированная двигательная установка (КДУ) включала в себя:

  • Маршевый ядерный ракетный двигатель (ЯРД) на основе ядерного реактора с радиационной защитой;
  • 10 двухконтурных турбореактивных двигателей (ДТРДФ) с теплообменниками во внутреннем и наружном контурах и форсажной камерой;
  • Гиперзвуковые прямоточные воздушно-реактивные двигатели (ГПВРД);
  • Два турбокомпрессора для обеспечения прокачки водорода через теплообменники ДТРДФ;
  • Распределительный узел с турбонасосными агрегатами, теплообменниками и вентилями трубопроводов, системы регулирования подачи топлива.

В качестве топлива для ДТРДФ и ГПВРД использовался водород, он же являлся и рабочим телом в замкнутом контуре ЯРД.

В завершенном виде концепция М-19 выглядела так: взлет и первоначальный разгон 500-тонный ВКС совершает как атомный самолёт с двигателями замкнутого цикла, причем в качестве теплоносителя, передающего тепло от реактора к десяти турбореактивным двигателям, служит водород. По мере разгона и набора высоты, водород начинает подаваться в форсажные камеры ТРД, чуть позже в прямоточные ГПРВД. Наконец, на высоте 50 км, при скорости полёта более 16М, включается атомный ЯРД с тягой 320 тс, который обеспечивал выход на рабочую орбиту высотой 185-200 километров. При взлетной массе около 500 тонн ВКС М-19 должен был выводить на опорную орбиту с наклонением 57,3° полезную нагрузку массой порядка 30-40 тонн.

Необходимо отметить малоизвестный факт, что при расчетах характеристик КДУ на турбопрямоточном, ракетно-прямоточном и гиперзвуковом режимах полета использовались результаты экспериментальных исследований и расчетов, проведенных в ЦИАМ, ЦАГИ и ИТПМ СО АН СССР.

Аякс» - гиперзвук по-новому

Работы по созданию гиперзвукового самолёта проводились и в СКБ «Нева» (г. Санкт-Петербург), на основе которого было образовано Государственное научно-исследовательское предприятие гиперзвуковых скоростей (ныне ОАО «НИПГС» ХК «Ленинец»).

В НИПГС к созданию ГЛА подошли принципиально по-новому. Концепция ГЛА «Аякс» была выдвинута в конце 80-х гг. Владимиром Львовичем Фрайштадтом. Суть её состоит в том, что у ГЛА отсутствует тепловая защита (в отличие от большинства ВКС и ГЛА). Тепловой поток, возникающий при гиперзвуковом полёте, впускается внутрь ГЛА для повышения его энергоресурса. Таким образом, ГЛА «Аякс» представлял собой открытую аэротермодинамическую систему, которая часть кинетической энергии гиперзвукового воздушного потока преобразовывала в химическую и электрическую, попутно решая вопрос с охлаждением планера. Для этого были спроектированы основные компоненты реактора химической регенерации тепла с катализатором, размещаемыми под обшивкой планера.

Обшивка самолета в наиболее термонапряженных местах имела двухслойную оболочку. Между слоями оболочки размещался катализатор из термостойкого материала («мочалки из никеля»), который представлял собой подсистему активного охлаждения с реакторами химической регенерации тепла. Согласно расчётам, при всех режимах гиперзвукового полета температура элементов планера ГЛА не превышала 800-850°С.

В состав ГЛА входит интегрированный с планером прямоточный воздушно-реактивный двигатель со сверхзвуковым горением и основной (маршевый) двигатель - магнито-плазмохимический двигатель (МПХД). МПХД предназначался для управления воздушным потоком, с помощью магнито-газодинамического ускорителя (МГД-ускорителя) и выработки электроэнергии с помощью МГД-генератора. Генератор имел мощность до 100 МВт, что вполне хватало для питания лазера, способного поражать на околоземных орбитах различные цели.

Предполагалось, что маршевый МПХД будет способен изменять скорость полёта в широком диапазоне полетного числа Маха. За счет торможения гиперзвукового потока магнитным полем создавались оптимальные условия в сверхзвуковой камере сгорания. При испытаниях в ЦАГИ было выявлено, что созданное в рамках концепции «Аякс» углеводородное топливо сгорает в несколько раз быстрее, чем водород. МГД-ускоритель мог «разгонять» продукты сгорания, увеличивая максимальную скорость полета до М=25, что гарантировало выход на околоземную орбиту.

Гражданский вариант гиперзвукового самолёта рассчитывался на скорость полёта 6000-12000 км/ч, дальность полёта - до 19000 км и перевозку 100 пассажиров. О военных разработках проекта «Аякс» сведений нет.

Российская концепция гиперзвука – ракеты и ПАК ДА

Работы, проведенные в СССР и в первые годы существования новой России по гиперзвуковым технологиям позволяют утверждать, что оригинальная отечественная методология и научно-технический задел сохранены и задействованы для создания российских ГЛА – как в ракетном, так и самолётном исполнении.

В 2004-м году, во время проведения командно-штабных учений «Безопасность 2004», президент России В.В. Путин сделал заявление, до сих пор будоражащее умы «общественности». «Были проведены эксперименты и кое-какие испытания… Вскоре российские Вооруженные силы получат боевые комплексы, способные действовать на межконтинентальных расстояниях, с гиперзвуковой скоростью, с большой точностью, с широким манёвром по высоте и направлению удара. Эти комплексы сделают бесперспективными любые образцы противоракетной обороны – существующие или перспективные» .

Некоторые отечественные СМИ интерпретировали это заявление в меру своего понимания. Например: «В России была разработана первая в мире гиперзвуковая маневрирующая ракета, запуск которой был произведен со стратегического бомбардировщика Ту-160 в феврале 2004 года, когда проводились командно-штабные учения «Безопасность 2004»…


На самом деле на учениях было запущена баллистическая ракета РС-18 «Стилет» с новым боевым оснащением. Вместо обычной боеголовки на РС-18 находилось некое устройство, способное менять высоту и направление полета, и, тем самым, преодолевать любую, в том числе американскую, противоракетную оборону. Судя по всему, испытанный во время учений «Безопасность 2004» аппарат являлся малоизвестной гиперзвуковой крылатой ракетой (ГКР) Х-90, разработанной в МКБ «Радуга» в начале 1990-х годов.

Судя по ТТХ этой ракеты, стратегический бомбардировщик Ту-160 может брать на борт две Х-90. Остальные же характеристики выглядят так: масса ракеты - 15 тонн, маршевый двигатель - ГПВРД, ускоритель - РДТТ, скорость полета – 4-5 М, высота пуска – 7000 м, высота полёта – 7000-20000 м, дальность пуска 3000-3500 км, число боеголовок - 2, мощность боеголовки - 200 кт.

В споре о том, что лучше самолёт или ракета, чаще всего проигрывали самолёты, так как ракеты оказывались быстрее и результативнее. А самолёт стал носителем крылатых ракет, способных поражать цели на расстоянии 2500-5000 км. Запуская ракету по цели, стратегический бомбардировщик не заходил в зону противодействующей ПВО, поэтому делать его гиперзвуковым не имело смысла.

«Гиперзвуковое соревнование» между самолётом и ракетой сейчас близится к новой развязке с предсказуемым результатом - ракеты вновь опережают самолёты.

Оценим ситуацию. На вооружении дальней авиации, входящей в ВКС России, состоят 60 турбовинтовых самолётов Ту-95МС и 16 реактивных бомбардировщиков Ту-160. Срок службы Ту-95МС истекает через 5-10 лет. Министерство обороны приняло решение об увеличение количества Ту-160 до 40 единиц. Ведутся работы по модернизации Ту-160. Таким образом, в ВКС скоро начнут поступать новые Ту-160М. ОКБ Туполева также является основным разработчиком перспективного авиационного комплекса дальней авиации (ПАК ДА).

Наш «вероятный противник» не сидит, сложа руки, он вкладывает деньги в развитие концепции Prompt Global Strike (PGS). Возможности военного бюджета США по объёму финансирования значительно превышают возможности бюджета России. Министерство финансов и Министерство обороны спорят о размере финансирования Госпрограммы вооружений на период до 2025 года. И речь идёт не только о текущих расходах на закупку нового ВВТ, но и о перспективных разработках, к которым относятся ПАК ДА и технологии ГЛА.

В создании гиперзвуковых боеприпасов (ракеты или снаряда) не всё однозначно. Явное преимущество гиперзвука – скорость, короткое время подлёта к цели, высокая гарантия преодоления систем ПВО и ПРО. Однако немало и проблем – дороговизна одноразового боеприпаса, сложность управления при изменении траектории полёта. Эти же недостатки стали решающими аргументами при сокращении или закрытии программ по пилотируемому гиперзвуку, то есть по гиперзвуковым самолётам.

Проблема дороговизны боеприпаса может решаться решается наличием на борту самолёта мощного вычислительного комплекса расчётов параметров бомбометания (пуска), который превращает обычные бомбы и ракеты в высокоточное оружие. Аналогичные бортовые вычислительные комплексы, установленные в боеголовках гиперзвуковых ракет, позволяют приравнять их к классу стратегического высокоточного оружия, которое, по мнению военных специалистов НОАК, способно заменить комплексы МБР. Наличие ракетных ГЛА стратегической дальности поставит под вопрос необходимость содержания дальней авиации, как имеющей ограничения по скорости и эффективности боевого применения.

Появление в арсенале любой армии гиперзвуковой зенитной ракеты (ГЗР) вынудит стратегическую авиацию «прятаться» на аэродромах, т.к. максимальное расстояние, с которого могут применяться крылатые ракеты бомбардировщика, такие ГЗР преодолеют за несколько минут. Повышение дальности, точности и манёвренности ГЗР позволит им сбивать МБР противника на любых высотах, а также срывать массированный налёт стратегических бомбардировщиков до выхода их на рубежи пуска крылатых ракет. Пилот «стратега», возможно и обнаружит запуск ГЗР, но увести самолёт от поражения вряд ли успеет.

Разработки ГЛА, которые сейчас интенсивно ведутся в развитых странах, свидетельствуют, что ведется поиск надежного инструмента (оружия), которое может гарантированно уничтожить ядерный арсенал противника до начала применения ядерного оружия, как последнего аргумента при защите государственного суверенитета. Гиперзвуковое оружие может применяться и по основным центрам политического, экономического и военного могущества государства.

Гиперзвук в России не забыт, идут работы по созданию ракетного оружия на основе этой технологии (МБР «Сармат», МБР «Рубеж», Х-90), но делать ставку только на один вид вооружения («чудо-оружие», «оружия возмездия») было бы, как минимум, не правильно.

В создании ПАК ДА ясности нет до сих пор, так как до сих пор неизвестны основные требования по его назначению и боевому применению. Существующие стратегические бомбардировщики, как составляющие ядерной триады России, постепенно теряют свое значение из-за появления новых видов оружия, в том числе и гиперзвукового.

Курс на «сдерживание» России, провозглашенный главной задачей НАТО, объективно способен привести к агрессии против нашей страны, в которой будут участвовать подготовленные и вооружённые современными средствами армии «Североатлантического договора». По количеству личного состава и вооружений НАТО превосходит Россию в 5–10 раз. Вокруг России выстраивается «санитарный пояс», включающий военные базы и позиции ПРО. По сути, проводимые НАТО мероприятия в военных терминах описывается как оперативная подготовка театра военных действий (ТВД). При этом главным источником поставок вооружений остаётся США, как было и в Первую, и Второю мировые войны.

Гиперзвуковой стратегический бомбардировщик может в течение часа оказаться в любой точке земного шара над любым военным объектом (базой), с которого обеспечивается снабжение ресурсами группировок войск, в том числе и в «санитарном поясе». Малоуязвимы для систем ПРО и ПВО, он может уничтожить такие объекты мощным высокоточным неядерным оружием. Наличие такого ГЛА в мирное время станет дополнительным сдерживающим фактором для сторонников глобальных военных авантюр.

Гражданский ГЛА может стать технической основой прорыва в развитии межконтинентальных перелётов и космических технологий. Научно-технический задел проектов Ту-2000, М-19 и «Аякс» по-прежнему актуален и может быть востребован.

Каким же будет будущий ПАК ДА – дозвуковым с СГКР или гиперзвуковым с доработанным обычным оружием, решать заказчикам – Министерству обороны и Правительству России.

«Кто ещё до сражения побеждает предварительным расчетом, у того шансов много. Кто ещё до сражения не побеждает расчетом, у того шансов мало. У кого шансов много – побеждает. У кого шансов мало – не побеждает. Тем более тот, у кого шансов нет вовсе». /Сунь Цзы, «Искусство войны»/

Военный эксперт Алексей Леонков

  • по ссылке .
    Стоимость годовой подписки -
    12 000 руб.

На этой неделе состоялся третий испытательный полет американского гиперзвукового летательного аппарата (ГЛА) X-51 AWaveRider - прототипа перспективной ракеты. Однако через 15 секунд после запуска, еще до начала работы основного двигателя, WaveRider потерял управление и упал в океан.

Предыдущее испытание, состоявшееся в прошлом году, тоже провалилось - ускоритель, разгоняющий аппарат до необходимой для запуска основного двигателя скорости, сработал не вовремя и не отделился. Однако ранее, в 2010-м, двигателю "машины" удалось проработать 200 секунд (планировалось 300), разогнав аппарат до пяти скоростей звука (5М). Продолжительность его работы, таким образом, втрое превысила предыдущий рекорд, поставленный российской/советской гиперзвуковой летающей лабораторией (ГЛЛ) "Холод". При этом, в отличие от отечественного аппарата, "американец" использовал в качестве топлива не водород, а авиационный керосин.

Нынешняя неудача, безусловно, затормозит гиперзвуковую программу США, на которую израсходовано $2 млрд. Однако это не отменяет того факта, что у Штатов уже есть ключевая для этой программы технология — работающий прототип гиперзвукового воздушно-реактивного двигателя (ГПВРД, он же скрамджет).

Потенциально такие двигатели способны разогнать летательный аппарат до 17 скоростей звука на водороде и до 8 - на углеводородном топливе. Однако для его работы необходимо добиться устойчивого горения топлива в сверхзвуковом воздушном потоке - что, по словам одного из разработчиков, ничуть не легче, чем удержать спичку зажженной в эпицентре урагана. Впрочем, еще не так давно считалось, что при использовании углеводородного топлива это в принципе невозможно, а единственным пригодным горючим для ГПРВД является взрывоопасный, создающий эксплуатационные трудности и "раздувающий" объемы топливных баков из-за низкой плотности водород. Тем не менее, начиная с 2004 года на Западе провели ряд относительно успешных испытаний летательных аппаратов — как водородных, так и "керосиновых".

В чем практический смысл двухмиллиардной программы? Проектная скорость Х-51 - 7М (около 7 тыс. км/ч для высоты 20 км), проектная дальность - 1600 км, высота полета - порядка 25 км. Иными словами, по "дальнобойности" он примерно соответствует крылатой ракете BGM-109 "Томогавк" (1600 км, с ядерной боевой частью - 2500 км) или баллистической ракете средней дальности - например, снятой с вооружения по договорам РСМД "Першинг-2" (1770 км). В чем преимущества "волнолета" по сравнению с "конкурентами"?

BGM-109 имеет дозвуковую скорость - 880 км/ч. Таким образом, полет на максимальную дальность занимает около двух часов. На протяжении этого времени ракета может быть обнаружена и уничтожена, а цель может переместиться. Безусловно, летящая на высоте порядка 60 м над землей и обладающая малой радиолокационной заметностью уже в силу размеров крылатая ракета - весьма проблемная цель для ПВО. Однако известны и успешные примеры обороны атакуемых объектов от "Томагавков" — например, иракского ядерного центра во время "Бури в пустыне".

Баллистическая ракета с дальностью того же порядка имеет среднюю скорость около 10 тыс. км/ч. Однако, во-первых, "баллистики" могут быть засечены из космоса уже в момент старта - внушительный факел от работающих ракетных двигателей достаточно хорошо заметен. Во-вторых, максимальная высота траектории баллистических ракет такой дальности приближается к 400 км, поэтому они довольно рано "засвечиваются" на радарах ПРО. В-третьих, "баллистики" — неманеврирующая цель, что делает возможным их перехват даже зенитными ракетами, наводящимися в точке упреждения. В целом при современном развитии систем ПРО баллистическая ракета средней дальности является достаточно уязвимой целью.

При этом баллистические ракеты - феноменально неэффективное средство доставки по соотношению стартовой массы и полезной нагрузки. Химические ракетные двигатели сочетают огромную тягу с еще более чудовищной прожорливостью, а баллистические полеты в принципе энергозатратны. В итоге, например, "Першинг-2" при стартовой массе в 7,4 т нес боевую часть в 399 кг. Для сравнения - "Томагавки" несут почти столько же при собственном весе около полутора тонн.

Теперь сравним с гиперзвуковыми ракетами. Скорость и подлетное время, в общем, сопоставимы с таковым у "Першинг-2". При этом Х-51, во-первых, использует гораздо более экономичный воздушно реактивный двигатель. Во-вторых, не забирается на высоту 400 км, "сообщая" о своем присутствии всем окрестным радарам ПРО. В-третьих — способен активно маневрировать. Заметим, что как показали испытания, проведенные в 2007-м шведской SaabBofors, на скоростях 5,5 М возможны сложные маневры даже в плотных слоях атмосферы. В итоге перехват WaveRider возможен только если перехватчик заметно превосходит последнего в скорости и маневренности. Сейчас таких перехватчиков просто нет.

Существующие комплексы ПРО также неспособны бороться с гиперзвуковыми ракетами класса X-51. При этом даже в случае принципиальной возможности поражения высокая скорость цели резко уменьшает зону перехвата.

Иными словами, WaveRider сочетает подлетное время, сопоставимое с баллистическими ракетами средней дальности, с гораздо меньшей заметностью и фактической неуязвимостью по отношению к современной ПВО/ПРО. Между тем, в свое время руководство СССР пошло на все, чтобы убрать "Першинги" из Европы, разменяв их на гораздо большее количество собственных ракет средней дальности - и не зря. 8-10-минутное подлетное время американских ракет превращало их в почти идеальное средство обезоруживающего и "обезглавливающего" удара - у подвергшихся атаке просто не оставалось времени на ответную реакцию. В случае доведения Х-51 до серии ситуация воспроизведется в ухудшенном варианте - при том, что создание ядерных вариантов "волнолетов" вполне возможно.

При этом применение ГПРВД не ограничивается аппаратами средней дальности. С одной стороны, по мнению консультативной группы HАТО по космическим исследованиям и разработкам (AGARD), скрамджеты могут быть широко использованы в чисто тактических системах малой дальности - это противотанковые ракеты (предназначенные также для поражения укреплений), ракеты "воздух-воздух" и малокалиберные (30-40 мм) снаряды для поражения воздушных целей. Еще одно вероятное направление - использование ГПВРД в противоракетах, предназначенных для перехвата баллистических ракет на начальном участке траектории.

С другой стороны, применение гиперзвуковых технологий способно привести к появлению принципиально новых классов стратегических систем. Наиболее консервативный вариант - использование гиперзвуковых аппаратов в качестве "маневрирующих боеголовок" для традиционных баллистических ракет.

Отметим, что баллистическая ракета большой дальности мало уязвима на среднем участке траектории (поскольку окружена огромным количеством легких ложных целей, дипольными отражателями и постановщиками помех), но уязвима на начальном и конечном участках траектории (легкие ложные цели отсеиваются самой атмосферой, в итоге боеголовку сопровождает только небольшое количество тяжелых ЛЦ). При этом и боеголовка, и ее "свита" представляют собой набор неманеврирующих баллистических целей, что радикально облегчает задачу ПРО. Однако скоростная и маневрирующая "машина" с ГПВРД практически неуязвима для нынешних средств ПВО и ПРО. В итоге, объединив классическую МБР с гиперзвуковым маневрирующим боевым блоком, можно добиться надежного прорыва соответствующего эшелона противоракетной обороны.

Иными словами, речь идет о технологии, способной действительно совершить переворот в военном деле. Гиперзвуковая угроза неизбежно станет реальностью в весьма обозримом будущем.